Metamath Proof Explorer


Theorem unexd

Description: The union of two sets is a set. (Contributed by SN, 16-Jul-2024)

Ref Expression
Hypotheses unexd.1 ( 𝜑𝐴𝑉 )
unexd.2 ( 𝜑𝐵𝑊 )
Assertion unexd ( 𝜑 → ( 𝐴𝐵 ) ∈ V )

Proof

Step Hyp Ref Expression
1 unexd.1 ( 𝜑𝐴𝑉 )
2 unexd.2 ( 𝜑𝐵𝑊 )
3 unexg ( ( 𝐴𝑉𝐵𝑊 ) → ( 𝐴𝐵 ) ∈ V )
4 1 2 3 syl2anc ( 𝜑 → ( 𝐴𝐵 ) ∈ V )