Metamath Proof Explorer


Theorem unexg

Description: A union of two sets is a set. Corollary 5.8 of TakeutiZaring p. 16. (Contributed by NM, 18-Sep-2006)

Ref Expression
Assertion unexg ( ( 𝐴𝑉𝐵𝑊 ) → ( 𝐴𝐵 ) ∈ V )

Proof

Step Hyp Ref Expression
1 elex ( 𝐴𝑉𝐴 ∈ V )
2 elex ( 𝐵𝑊𝐵 ∈ V )
3 unexb ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ↔ ( 𝐴𝐵 ) ∈ V )
4 3 biimpi ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( 𝐴𝐵 ) ∈ V )
5 1 2 4 syl2an ( ( 𝐴𝑉𝐵𝑊 ) → ( 𝐴𝐵 ) ∈ V )