Description: A union of two sets is a set. Corollary 5.8 of TakeutiZaring p. 16. (Contributed by NM, 18-Sep-2006)
Ref | Expression | ||
---|---|---|---|
Assertion | unexg | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 ∪ 𝐵 ) ∈ V ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex | ⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ V ) | |
2 | elex | ⊢ ( 𝐵 ∈ 𝑊 → 𝐵 ∈ V ) | |
3 | unexb | ⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ↔ ( 𝐴 ∪ 𝐵 ) ∈ V ) | |
4 | 3 | biimpi | ⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( 𝐴 ∪ 𝐵 ) ∈ V ) |
5 | 1 2 4 | syl2an | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 ∪ 𝐵 ) ∈ V ) |