Metamath Proof Explorer


Theorem unexgOLD

Description: Obsolete proof of unexg as of 21-Jul-2025. (Contributed by NM, 18-Sep-2006) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion unexgOLD ( ( 𝐴𝑉𝐵𝑊 ) → ( 𝐴𝐵 ) ∈ V )

Proof

Step Hyp Ref Expression
1 elex ( 𝐴𝑉𝐴 ∈ V )
2 elex ( 𝐵𝑊𝐵 ∈ V )
3 unexb ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ↔ ( 𝐴𝐵 ) ∈ V )
4 3 biimpi ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( 𝐴𝐵 ) ∈ V )
5 1 2 4 syl2an ( ( 𝐴𝑉𝐵𝑊 ) → ( 𝐴𝐵 ) ∈ V )