| Step |
Hyp |
Ref |
Expression |
| 1 |
|
uneq2 |
⊢ ( 𝑥 = ∅ → ( 𝐴 ∪ 𝑥 ) = ( 𝐴 ∪ ∅ ) ) |
| 2 |
1
|
eleq1d |
⊢ ( 𝑥 = ∅ → ( ( 𝐴 ∪ 𝑥 ) ∈ Fin ↔ ( 𝐴 ∪ ∅ ) ∈ Fin ) ) |
| 3 |
2
|
imbi2d |
⊢ ( 𝑥 = ∅ → ( ( 𝐴 ∈ Fin → ( 𝐴 ∪ 𝑥 ) ∈ Fin ) ↔ ( 𝐴 ∈ Fin → ( 𝐴 ∪ ∅ ) ∈ Fin ) ) ) |
| 4 |
|
uneq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐴 ∪ 𝑥 ) = ( 𝐴 ∪ 𝑦 ) ) |
| 5 |
4
|
eleq1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐴 ∪ 𝑥 ) ∈ Fin ↔ ( 𝐴 ∪ 𝑦 ) ∈ Fin ) ) |
| 6 |
5
|
imbi2d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐴 ∈ Fin → ( 𝐴 ∪ 𝑥 ) ∈ Fin ) ↔ ( 𝐴 ∈ Fin → ( 𝐴 ∪ 𝑦 ) ∈ Fin ) ) ) |
| 7 |
|
uneq2 |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( 𝐴 ∪ 𝑥 ) = ( 𝐴 ∪ ( 𝑦 ∪ { 𝑧 } ) ) ) |
| 8 |
7
|
eleq1d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( 𝐴 ∪ 𝑥 ) ∈ Fin ↔ ( 𝐴 ∪ ( 𝑦 ∪ { 𝑧 } ) ) ∈ Fin ) ) |
| 9 |
8
|
imbi2d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( 𝐴 ∈ Fin → ( 𝐴 ∪ 𝑥 ) ∈ Fin ) ↔ ( 𝐴 ∈ Fin → ( 𝐴 ∪ ( 𝑦 ∪ { 𝑧 } ) ) ∈ Fin ) ) ) |
| 10 |
|
uneq2 |
⊢ ( 𝑥 = 𝐵 → ( 𝐴 ∪ 𝑥 ) = ( 𝐴 ∪ 𝐵 ) ) |
| 11 |
10
|
eleq1d |
⊢ ( 𝑥 = 𝐵 → ( ( 𝐴 ∪ 𝑥 ) ∈ Fin ↔ ( 𝐴 ∪ 𝐵 ) ∈ Fin ) ) |
| 12 |
11
|
imbi2d |
⊢ ( 𝑥 = 𝐵 → ( ( 𝐴 ∈ Fin → ( 𝐴 ∪ 𝑥 ) ∈ Fin ) ↔ ( 𝐴 ∈ Fin → ( 𝐴 ∪ 𝐵 ) ∈ Fin ) ) ) |
| 13 |
|
un0 |
⊢ ( 𝐴 ∪ ∅ ) = 𝐴 |
| 14 |
13
|
eleq1i |
⊢ ( ( 𝐴 ∪ ∅ ) ∈ Fin ↔ 𝐴 ∈ Fin ) |
| 15 |
14
|
biimpri |
⊢ ( 𝐴 ∈ Fin → ( 𝐴 ∪ ∅ ) ∈ Fin ) |
| 16 |
|
snssi |
⊢ ( 𝑧 ∈ 𝐴 → { 𝑧 } ⊆ 𝐴 ) |
| 17 |
|
ssequn2 |
⊢ ( { 𝑧 } ⊆ 𝐴 ↔ ( 𝐴 ∪ { 𝑧 } ) = 𝐴 ) |
| 18 |
17
|
biimpi |
⊢ ( { 𝑧 } ⊆ 𝐴 → ( 𝐴 ∪ { 𝑧 } ) = 𝐴 ) |
| 19 |
18
|
uneq2d |
⊢ ( { 𝑧 } ⊆ 𝐴 → ( 𝑦 ∪ ( 𝐴 ∪ { 𝑧 } ) ) = ( 𝑦 ∪ 𝐴 ) ) |
| 20 |
|
un12 |
⊢ ( 𝐴 ∪ ( 𝑦 ∪ { 𝑧 } ) ) = ( 𝑦 ∪ ( 𝐴 ∪ { 𝑧 } ) ) |
| 21 |
|
uncom |
⊢ ( 𝐴 ∪ 𝑦 ) = ( 𝑦 ∪ 𝐴 ) |
| 22 |
19 20 21
|
3eqtr4g |
⊢ ( { 𝑧 } ⊆ 𝐴 → ( 𝐴 ∪ ( 𝑦 ∪ { 𝑧 } ) ) = ( 𝐴 ∪ 𝑦 ) ) |
| 23 |
16 22
|
syl |
⊢ ( 𝑧 ∈ 𝐴 → ( 𝐴 ∪ ( 𝑦 ∪ { 𝑧 } ) ) = ( 𝐴 ∪ 𝑦 ) ) |
| 24 |
23
|
eleq1d |
⊢ ( 𝑧 ∈ 𝐴 → ( ( 𝐴 ∪ ( 𝑦 ∪ { 𝑧 } ) ) ∈ Fin ↔ ( 𝐴 ∪ 𝑦 ) ∈ Fin ) ) |
| 25 |
24
|
biimprd |
⊢ ( 𝑧 ∈ 𝐴 → ( ( 𝐴 ∪ 𝑦 ) ∈ Fin → ( 𝐴 ∪ ( 𝑦 ∪ { 𝑧 } ) ) ∈ Fin ) ) |
| 26 |
25
|
adantld |
⊢ ( 𝑧 ∈ 𝐴 → ( ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝐴 ∪ 𝑦 ) ∈ Fin ) → ( 𝐴 ∪ ( 𝑦 ∪ { 𝑧 } ) ) ∈ Fin ) ) |
| 27 |
|
isfi |
⊢ ( ( 𝐴 ∪ 𝑦 ) ∈ Fin ↔ ∃ 𝑤 ∈ ω ( 𝐴 ∪ 𝑦 ) ≈ 𝑤 ) |
| 28 |
27
|
biimpi |
⊢ ( ( 𝐴 ∪ 𝑦 ) ∈ Fin → ∃ 𝑤 ∈ ω ( 𝐴 ∪ 𝑦 ) ≈ 𝑤 ) |
| 29 |
|
r19.41v |
⊢ ( ∃ 𝑤 ∈ ω ( ( 𝐴 ∪ 𝑦 ) ≈ 𝑤 ∧ ( ¬ 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ∈ 𝑦 ) ) ↔ ( ∃ 𝑤 ∈ ω ( 𝐴 ∪ 𝑦 ) ≈ 𝑤 ∧ ( ¬ 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ∈ 𝑦 ) ) ) |
| 30 |
|
disjsn |
⊢ ( ( ( 𝐴 ∪ 𝑦 ) ∩ { 𝑧 } ) = ∅ ↔ ¬ 𝑧 ∈ ( 𝐴 ∪ 𝑦 ) ) |
| 31 |
|
elun |
⊢ ( 𝑧 ∈ ( 𝐴 ∪ 𝑦 ) ↔ ( 𝑧 ∈ 𝐴 ∨ 𝑧 ∈ 𝑦 ) ) |
| 32 |
31
|
notbii |
⊢ ( ¬ 𝑧 ∈ ( 𝐴 ∪ 𝑦 ) ↔ ¬ ( 𝑧 ∈ 𝐴 ∨ 𝑧 ∈ 𝑦 ) ) |
| 33 |
|
pm4.56 |
⊢ ( ( ¬ 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ∈ 𝑦 ) ↔ ¬ ( 𝑧 ∈ 𝐴 ∨ 𝑧 ∈ 𝑦 ) ) |
| 34 |
32 33
|
bitr4i |
⊢ ( ¬ 𝑧 ∈ ( 𝐴 ∪ 𝑦 ) ↔ ( ¬ 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ∈ 𝑦 ) ) |
| 35 |
30 34
|
sylbbr |
⊢ ( ( ¬ 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ( 𝐴 ∪ 𝑦 ) ∩ { 𝑧 } ) = ∅ ) |
| 36 |
|
nnord |
⊢ ( 𝑤 ∈ ω → Ord 𝑤 ) |
| 37 |
|
orddisj |
⊢ ( Ord 𝑤 → ( 𝑤 ∩ { 𝑤 } ) = ∅ ) |
| 38 |
36 37
|
syl |
⊢ ( 𝑤 ∈ ω → ( 𝑤 ∩ { 𝑤 } ) = ∅ ) |
| 39 |
|
en2sn |
⊢ ( ( 𝑧 ∈ V ∧ 𝑤 ∈ V ) → { 𝑧 } ≈ { 𝑤 } ) |
| 40 |
39
|
el2v |
⊢ { 𝑧 } ≈ { 𝑤 } |
| 41 |
|
unen |
⊢ ( ( ( ( 𝐴 ∪ 𝑦 ) ≈ 𝑤 ∧ { 𝑧 } ≈ { 𝑤 } ) ∧ ( ( ( 𝐴 ∪ 𝑦 ) ∩ { 𝑧 } ) = ∅ ∧ ( 𝑤 ∩ { 𝑤 } ) = ∅ ) ) → ( ( 𝐴 ∪ 𝑦 ) ∪ { 𝑧 } ) ≈ ( 𝑤 ∪ { 𝑤 } ) ) |
| 42 |
40 41
|
mpanl2 |
⊢ ( ( ( 𝐴 ∪ 𝑦 ) ≈ 𝑤 ∧ ( ( ( 𝐴 ∪ 𝑦 ) ∩ { 𝑧 } ) = ∅ ∧ ( 𝑤 ∩ { 𝑤 } ) = ∅ ) ) → ( ( 𝐴 ∪ 𝑦 ) ∪ { 𝑧 } ) ≈ ( 𝑤 ∪ { 𝑤 } ) ) |
| 43 |
38 42
|
sylanr2 |
⊢ ( ( ( 𝐴 ∪ 𝑦 ) ≈ 𝑤 ∧ ( ( ( 𝐴 ∪ 𝑦 ) ∩ { 𝑧 } ) = ∅ ∧ 𝑤 ∈ ω ) ) → ( ( 𝐴 ∪ 𝑦 ) ∪ { 𝑧 } ) ≈ ( 𝑤 ∪ { 𝑤 } ) ) |
| 44 |
35 43
|
sylanr1 |
⊢ ( ( ( 𝐴 ∪ 𝑦 ) ≈ 𝑤 ∧ ( ( ¬ 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑤 ∈ ω ) ) → ( ( 𝐴 ∪ 𝑦 ) ∪ { 𝑧 } ) ≈ ( 𝑤 ∪ { 𝑤 } ) ) |
| 45 |
44
|
3impb |
⊢ ( ( ( 𝐴 ∪ 𝑦 ) ≈ 𝑤 ∧ ( ¬ 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑤 ∈ ω ) → ( ( 𝐴 ∪ 𝑦 ) ∪ { 𝑧 } ) ≈ ( 𝑤 ∪ { 𝑤 } ) ) |
| 46 |
45
|
3comr |
⊢ ( ( 𝑤 ∈ ω ∧ ( 𝐴 ∪ 𝑦 ) ≈ 𝑤 ∧ ( ¬ 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( ( 𝐴 ∪ 𝑦 ) ∪ { 𝑧 } ) ≈ ( 𝑤 ∪ { 𝑤 } ) ) |
| 47 |
46
|
3expb |
⊢ ( ( 𝑤 ∈ ω ∧ ( ( 𝐴 ∪ 𝑦 ) ≈ 𝑤 ∧ ( ¬ 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ∈ 𝑦 ) ) ) → ( ( 𝐴 ∪ 𝑦 ) ∪ { 𝑧 } ) ≈ ( 𝑤 ∪ { 𝑤 } ) ) |
| 48 |
|
unass |
⊢ ( ( 𝐴 ∪ 𝑦 ) ∪ { 𝑧 } ) = ( 𝐴 ∪ ( 𝑦 ∪ { 𝑧 } ) ) |
| 49 |
|
df-suc |
⊢ suc 𝑤 = ( 𝑤 ∪ { 𝑤 } ) |
| 50 |
|
peano2 |
⊢ ( 𝑤 ∈ ω → suc 𝑤 ∈ ω ) |
| 51 |
49 50
|
eqeltrrid |
⊢ ( 𝑤 ∈ ω → ( 𝑤 ∪ { 𝑤 } ) ∈ ω ) |
| 52 |
|
breq2 |
⊢ ( 𝑣 = ( 𝑤 ∪ { 𝑤 } ) → ( ( ( 𝐴 ∪ 𝑦 ) ∪ { 𝑧 } ) ≈ 𝑣 ↔ ( ( 𝐴 ∪ 𝑦 ) ∪ { 𝑧 } ) ≈ ( 𝑤 ∪ { 𝑤 } ) ) ) |
| 53 |
52
|
rspcev |
⊢ ( ( ( 𝑤 ∪ { 𝑤 } ) ∈ ω ∧ ( ( 𝐴 ∪ 𝑦 ) ∪ { 𝑧 } ) ≈ ( 𝑤 ∪ { 𝑤 } ) ) → ∃ 𝑣 ∈ ω ( ( 𝐴 ∪ 𝑦 ) ∪ { 𝑧 } ) ≈ 𝑣 ) |
| 54 |
51 53
|
sylan |
⊢ ( ( 𝑤 ∈ ω ∧ ( ( 𝐴 ∪ 𝑦 ) ∪ { 𝑧 } ) ≈ ( 𝑤 ∪ { 𝑤 } ) ) → ∃ 𝑣 ∈ ω ( ( 𝐴 ∪ 𝑦 ) ∪ { 𝑧 } ) ≈ 𝑣 ) |
| 55 |
|
isfi |
⊢ ( ( ( 𝐴 ∪ 𝑦 ) ∪ { 𝑧 } ) ∈ Fin ↔ ∃ 𝑣 ∈ ω ( ( 𝐴 ∪ 𝑦 ) ∪ { 𝑧 } ) ≈ 𝑣 ) |
| 56 |
54 55
|
sylibr |
⊢ ( ( 𝑤 ∈ ω ∧ ( ( 𝐴 ∪ 𝑦 ) ∪ { 𝑧 } ) ≈ ( 𝑤 ∪ { 𝑤 } ) ) → ( ( 𝐴 ∪ 𝑦 ) ∪ { 𝑧 } ) ∈ Fin ) |
| 57 |
48 56
|
eqeltrrid |
⊢ ( ( 𝑤 ∈ ω ∧ ( ( 𝐴 ∪ 𝑦 ) ∪ { 𝑧 } ) ≈ ( 𝑤 ∪ { 𝑤 } ) ) → ( 𝐴 ∪ ( 𝑦 ∪ { 𝑧 } ) ) ∈ Fin ) |
| 58 |
47 57
|
syldan |
⊢ ( ( 𝑤 ∈ ω ∧ ( ( 𝐴 ∪ 𝑦 ) ≈ 𝑤 ∧ ( ¬ 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ∈ 𝑦 ) ) ) → ( 𝐴 ∪ ( 𝑦 ∪ { 𝑧 } ) ) ∈ Fin ) |
| 59 |
58
|
rexlimiva |
⊢ ( ∃ 𝑤 ∈ ω ( ( 𝐴 ∪ 𝑦 ) ≈ 𝑤 ∧ ( ¬ 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( 𝐴 ∪ ( 𝑦 ∪ { 𝑧 } ) ) ∈ Fin ) |
| 60 |
29 59
|
sylbir |
⊢ ( ( ∃ 𝑤 ∈ ω ( 𝐴 ∪ 𝑦 ) ≈ 𝑤 ∧ ( ¬ 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( 𝐴 ∪ ( 𝑦 ∪ { 𝑧 } ) ) ∈ Fin ) |
| 61 |
28 60
|
sylan |
⊢ ( ( ( 𝐴 ∪ 𝑦 ) ∈ Fin ∧ ( ¬ 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( 𝐴 ∪ ( 𝑦 ∪ { 𝑧 } ) ) ∈ Fin ) |
| 62 |
61
|
ancoms |
⊢ ( ( ( ¬ 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝐴 ∪ 𝑦 ) ∈ Fin ) → ( 𝐴 ∪ ( 𝑦 ∪ { 𝑧 } ) ) ∈ Fin ) |
| 63 |
62
|
expl |
⊢ ( ¬ 𝑧 ∈ 𝐴 → ( ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝐴 ∪ 𝑦 ) ∈ Fin ) → ( 𝐴 ∪ ( 𝑦 ∪ { 𝑧 } ) ) ∈ Fin ) ) |
| 64 |
26 63
|
pm2.61i |
⊢ ( ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝐴 ∪ 𝑦 ) ∈ Fin ) → ( 𝐴 ∪ ( 𝑦 ∪ { 𝑧 } ) ) ∈ Fin ) |
| 65 |
64
|
ex |
⊢ ( ¬ 𝑧 ∈ 𝑦 → ( ( 𝐴 ∪ 𝑦 ) ∈ Fin → ( 𝐴 ∪ ( 𝑦 ∪ { 𝑧 } ) ) ∈ Fin ) ) |
| 66 |
65
|
imim2d |
⊢ ( ¬ 𝑧 ∈ 𝑦 → ( ( 𝐴 ∈ Fin → ( 𝐴 ∪ 𝑦 ) ∈ Fin ) → ( 𝐴 ∈ Fin → ( 𝐴 ∪ ( 𝑦 ∪ { 𝑧 } ) ) ∈ Fin ) ) ) |
| 67 |
66
|
adantl |
⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ( 𝐴 ∈ Fin → ( 𝐴 ∪ 𝑦 ) ∈ Fin ) → ( 𝐴 ∈ Fin → ( 𝐴 ∪ ( 𝑦 ∪ { 𝑧 } ) ) ∈ Fin ) ) ) |
| 68 |
3 6 9 12 15 67
|
findcard2s |
⊢ ( 𝐵 ∈ Fin → ( 𝐴 ∈ Fin → ( 𝐴 ∪ 𝐵 ) ∈ Fin ) ) |
| 69 |
68
|
impcom |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( 𝐴 ∪ 𝐵 ) ∈ Fin ) |