Step |
Hyp |
Ref |
Expression |
1 |
|
diffi |
⊢ ( 𝐵 ∈ Fin → ( 𝐵 ∖ 𝐴 ) ∈ Fin ) |
2 |
|
reeanv |
⊢ ( ∃ 𝑥 ∈ ω ∃ 𝑦 ∈ ω ( 𝐴 ≈ 𝑥 ∧ ( 𝐵 ∖ 𝐴 ) ≈ 𝑦 ) ↔ ( ∃ 𝑥 ∈ ω 𝐴 ≈ 𝑥 ∧ ∃ 𝑦 ∈ ω ( 𝐵 ∖ 𝐴 ) ≈ 𝑦 ) ) |
3 |
|
isfi |
⊢ ( 𝐴 ∈ Fin ↔ ∃ 𝑥 ∈ ω 𝐴 ≈ 𝑥 ) |
4 |
|
isfi |
⊢ ( ( 𝐵 ∖ 𝐴 ) ∈ Fin ↔ ∃ 𝑦 ∈ ω ( 𝐵 ∖ 𝐴 ) ≈ 𝑦 ) |
5 |
3 4
|
anbi12i |
⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝐵 ∖ 𝐴 ) ∈ Fin ) ↔ ( ∃ 𝑥 ∈ ω 𝐴 ≈ 𝑥 ∧ ∃ 𝑦 ∈ ω ( 𝐵 ∖ 𝐴 ) ≈ 𝑦 ) ) |
6 |
2 5
|
bitr4i |
⊢ ( ∃ 𝑥 ∈ ω ∃ 𝑦 ∈ ω ( 𝐴 ≈ 𝑥 ∧ ( 𝐵 ∖ 𝐴 ) ≈ 𝑦 ) ↔ ( 𝐴 ∈ Fin ∧ ( 𝐵 ∖ 𝐴 ) ∈ Fin ) ) |
7 |
|
nnacl |
⊢ ( ( 𝑥 ∈ ω ∧ 𝑦 ∈ ω ) → ( 𝑥 +o 𝑦 ) ∈ ω ) |
8 |
|
unfilem3 |
⊢ ( ( 𝑥 ∈ ω ∧ 𝑦 ∈ ω ) → 𝑦 ≈ ( ( 𝑥 +o 𝑦 ) ∖ 𝑥 ) ) |
9 |
|
entr |
⊢ ( ( ( 𝐵 ∖ 𝐴 ) ≈ 𝑦 ∧ 𝑦 ≈ ( ( 𝑥 +o 𝑦 ) ∖ 𝑥 ) ) → ( 𝐵 ∖ 𝐴 ) ≈ ( ( 𝑥 +o 𝑦 ) ∖ 𝑥 ) ) |
10 |
9
|
expcom |
⊢ ( 𝑦 ≈ ( ( 𝑥 +o 𝑦 ) ∖ 𝑥 ) → ( ( 𝐵 ∖ 𝐴 ) ≈ 𝑦 → ( 𝐵 ∖ 𝐴 ) ≈ ( ( 𝑥 +o 𝑦 ) ∖ 𝑥 ) ) ) |
11 |
8 10
|
syl |
⊢ ( ( 𝑥 ∈ ω ∧ 𝑦 ∈ ω ) → ( ( 𝐵 ∖ 𝐴 ) ≈ 𝑦 → ( 𝐵 ∖ 𝐴 ) ≈ ( ( 𝑥 +o 𝑦 ) ∖ 𝑥 ) ) ) |
12 |
|
disjdif |
⊢ ( 𝐴 ∩ ( 𝐵 ∖ 𝐴 ) ) = ∅ |
13 |
|
disjdif |
⊢ ( 𝑥 ∩ ( ( 𝑥 +o 𝑦 ) ∖ 𝑥 ) ) = ∅ |
14 |
|
unen |
⊢ ( ( ( 𝐴 ≈ 𝑥 ∧ ( 𝐵 ∖ 𝐴 ) ≈ ( ( 𝑥 +o 𝑦 ) ∖ 𝑥 ) ) ∧ ( ( 𝐴 ∩ ( 𝐵 ∖ 𝐴 ) ) = ∅ ∧ ( 𝑥 ∩ ( ( 𝑥 +o 𝑦 ) ∖ 𝑥 ) ) = ∅ ) ) → ( 𝐴 ∪ ( 𝐵 ∖ 𝐴 ) ) ≈ ( 𝑥 ∪ ( ( 𝑥 +o 𝑦 ) ∖ 𝑥 ) ) ) |
15 |
12 13 14
|
mpanr12 |
⊢ ( ( 𝐴 ≈ 𝑥 ∧ ( 𝐵 ∖ 𝐴 ) ≈ ( ( 𝑥 +o 𝑦 ) ∖ 𝑥 ) ) → ( 𝐴 ∪ ( 𝐵 ∖ 𝐴 ) ) ≈ ( 𝑥 ∪ ( ( 𝑥 +o 𝑦 ) ∖ 𝑥 ) ) ) |
16 |
|
undif2 |
⊢ ( 𝐴 ∪ ( 𝐵 ∖ 𝐴 ) ) = ( 𝐴 ∪ 𝐵 ) |
17 |
16
|
a1i |
⊢ ( ( 𝑥 ∈ ω ∧ 𝑦 ∈ ω ) → ( 𝐴 ∪ ( 𝐵 ∖ 𝐴 ) ) = ( 𝐴 ∪ 𝐵 ) ) |
18 |
|
nnaword1 |
⊢ ( ( 𝑥 ∈ ω ∧ 𝑦 ∈ ω ) → 𝑥 ⊆ ( 𝑥 +o 𝑦 ) ) |
19 |
|
undif |
⊢ ( 𝑥 ⊆ ( 𝑥 +o 𝑦 ) ↔ ( 𝑥 ∪ ( ( 𝑥 +o 𝑦 ) ∖ 𝑥 ) ) = ( 𝑥 +o 𝑦 ) ) |
20 |
18 19
|
sylib |
⊢ ( ( 𝑥 ∈ ω ∧ 𝑦 ∈ ω ) → ( 𝑥 ∪ ( ( 𝑥 +o 𝑦 ) ∖ 𝑥 ) ) = ( 𝑥 +o 𝑦 ) ) |
21 |
17 20
|
breq12d |
⊢ ( ( 𝑥 ∈ ω ∧ 𝑦 ∈ ω ) → ( ( 𝐴 ∪ ( 𝐵 ∖ 𝐴 ) ) ≈ ( 𝑥 ∪ ( ( 𝑥 +o 𝑦 ) ∖ 𝑥 ) ) ↔ ( 𝐴 ∪ 𝐵 ) ≈ ( 𝑥 +o 𝑦 ) ) ) |
22 |
15 21
|
syl5ib |
⊢ ( ( 𝑥 ∈ ω ∧ 𝑦 ∈ ω ) → ( ( 𝐴 ≈ 𝑥 ∧ ( 𝐵 ∖ 𝐴 ) ≈ ( ( 𝑥 +o 𝑦 ) ∖ 𝑥 ) ) → ( 𝐴 ∪ 𝐵 ) ≈ ( 𝑥 +o 𝑦 ) ) ) |
23 |
11 22
|
sylan2d |
⊢ ( ( 𝑥 ∈ ω ∧ 𝑦 ∈ ω ) → ( ( 𝐴 ≈ 𝑥 ∧ ( 𝐵 ∖ 𝐴 ) ≈ 𝑦 ) → ( 𝐴 ∪ 𝐵 ) ≈ ( 𝑥 +o 𝑦 ) ) ) |
24 |
|
breq2 |
⊢ ( 𝑧 = ( 𝑥 +o 𝑦 ) → ( ( 𝐴 ∪ 𝐵 ) ≈ 𝑧 ↔ ( 𝐴 ∪ 𝐵 ) ≈ ( 𝑥 +o 𝑦 ) ) ) |
25 |
24
|
rspcev |
⊢ ( ( ( 𝑥 +o 𝑦 ) ∈ ω ∧ ( 𝐴 ∪ 𝐵 ) ≈ ( 𝑥 +o 𝑦 ) ) → ∃ 𝑧 ∈ ω ( 𝐴 ∪ 𝐵 ) ≈ 𝑧 ) |
26 |
|
isfi |
⊢ ( ( 𝐴 ∪ 𝐵 ) ∈ Fin ↔ ∃ 𝑧 ∈ ω ( 𝐴 ∪ 𝐵 ) ≈ 𝑧 ) |
27 |
25 26
|
sylibr |
⊢ ( ( ( 𝑥 +o 𝑦 ) ∈ ω ∧ ( 𝐴 ∪ 𝐵 ) ≈ ( 𝑥 +o 𝑦 ) ) → ( 𝐴 ∪ 𝐵 ) ∈ Fin ) |
28 |
7 23 27
|
syl6an |
⊢ ( ( 𝑥 ∈ ω ∧ 𝑦 ∈ ω ) → ( ( 𝐴 ≈ 𝑥 ∧ ( 𝐵 ∖ 𝐴 ) ≈ 𝑦 ) → ( 𝐴 ∪ 𝐵 ) ∈ Fin ) ) |
29 |
28
|
rexlimivv |
⊢ ( ∃ 𝑥 ∈ ω ∃ 𝑦 ∈ ω ( 𝐴 ≈ 𝑥 ∧ ( 𝐵 ∖ 𝐴 ) ≈ 𝑦 ) → ( 𝐴 ∪ 𝐵 ) ∈ Fin ) |
30 |
6 29
|
sylbir |
⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝐵 ∖ 𝐴 ) ∈ Fin ) → ( 𝐴 ∪ 𝐵 ) ∈ Fin ) |
31 |
1 30
|
sylan2 |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( 𝐴 ∪ 𝐵 ) ∈ Fin ) |