Metamath Proof Explorer


Theorem unfib

Description: A union is finite if and only if the operands are finite. (Contributed by AV, 10-May-2025)

Ref Expression
Assertion unfib ( ( 𝐴𝐵 ) ∈ Fin ↔ ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) )

Proof

Step Hyp Ref Expression
1 unfir ( ( 𝐴𝐵 ) ∈ Fin → ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) )
2 unfi ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( 𝐴𝐵 ) ∈ Fin )
3 1 2 impbii ( ( 𝐴𝐵 ) ∈ Fin ↔ ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) )