Metamath Proof Explorer
Description: The union of two finite sets is finite. (Contributed by Glauco
Siliprandi, 5-Feb-2022)
|
|
Ref |
Expression |
|
Hypotheses |
unfid.1 |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
|
|
unfid.2 |
⊢ ( 𝜑 → 𝐵 ∈ Fin ) |
|
Assertion |
unfid |
⊢ ( 𝜑 → ( 𝐴 ∪ 𝐵 ) ∈ Fin ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
unfid.1 |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
| 2 |
|
unfid.2 |
⊢ ( 𝜑 → 𝐵 ∈ Fin ) |
| 3 |
|
unfi |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( 𝐴 ∪ 𝐵 ) ∈ Fin ) |
| 4 |
1 2 3
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 ∪ 𝐵 ) ∈ Fin ) |