Metamath Proof Explorer


Theorem unfid

Description: The union of two finite sets is finite. (Contributed by Glauco Siliprandi, 5-Feb-2022)

Ref Expression
Hypotheses unfid.1 ( 𝜑𝐴 ∈ Fin )
unfid.2 ( 𝜑𝐵 ∈ Fin )
Assertion unfid ( 𝜑 → ( 𝐴𝐵 ) ∈ Fin )

Proof

Step Hyp Ref Expression
1 unfid.1 ( 𝜑𝐴 ∈ Fin )
2 unfid.2 ( 𝜑𝐵 ∈ Fin )
3 unfi ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( 𝐴𝐵 ) ∈ Fin )
4 1 2 3 syl2anc ( 𝜑 → ( 𝐴𝐵 ) ∈ Fin )