Step |
Hyp |
Ref |
Expression |
1 |
|
unfilem1.1 |
⊢ 𝐴 ∈ ω |
2 |
|
unfilem1.2 |
⊢ 𝐵 ∈ ω |
3 |
|
unfilem1.3 |
⊢ 𝐹 = ( 𝑥 ∈ 𝐵 ↦ ( 𝐴 +o 𝑥 ) ) |
4 |
|
elnn |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝐵 ∈ ω ) → 𝑥 ∈ ω ) |
5 |
2 4
|
mpan2 |
⊢ ( 𝑥 ∈ 𝐵 → 𝑥 ∈ ω ) |
6 |
|
nnaord |
⊢ ( ( 𝑥 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴 ∈ ω ) → ( 𝑥 ∈ 𝐵 ↔ ( 𝐴 +o 𝑥 ) ∈ ( 𝐴 +o 𝐵 ) ) ) |
7 |
2 1 6
|
mp3an23 |
⊢ ( 𝑥 ∈ ω → ( 𝑥 ∈ 𝐵 ↔ ( 𝐴 +o 𝑥 ) ∈ ( 𝐴 +o 𝐵 ) ) ) |
8 |
5 7
|
syl |
⊢ ( 𝑥 ∈ 𝐵 → ( 𝑥 ∈ 𝐵 ↔ ( 𝐴 +o 𝑥 ) ∈ ( 𝐴 +o 𝐵 ) ) ) |
9 |
8
|
ibi |
⊢ ( 𝑥 ∈ 𝐵 → ( 𝐴 +o 𝑥 ) ∈ ( 𝐴 +o 𝐵 ) ) |
10 |
|
nnaword1 |
⊢ ( ( 𝐴 ∈ ω ∧ 𝑥 ∈ ω ) → 𝐴 ⊆ ( 𝐴 +o 𝑥 ) ) |
11 |
|
nnord |
⊢ ( 𝐴 ∈ ω → Ord 𝐴 ) |
12 |
|
nnacl |
⊢ ( ( 𝐴 ∈ ω ∧ 𝑥 ∈ ω ) → ( 𝐴 +o 𝑥 ) ∈ ω ) |
13 |
|
nnord |
⊢ ( ( 𝐴 +o 𝑥 ) ∈ ω → Ord ( 𝐴 +o 𝑥 ) ) |
14 |
12 13
|
syl |
⊢ ( ( 𝐴 ∈ ω ∧ 𝑥 ∈ ω ) → Ord ( 𝐴 +o 𝑥 ) ) |
15 |
|
ordtri1 |
⊢ ( ( Ord 𝐴 ∧ Ord ( 𝐴 +o 𝑥 ) ) → ( 𝐴 ⊆ ( 𝐴 +o 𝑥 ) ↔ ¬ ( 𝐴 +o 𝑥 ) ∈ 𝐴 ) ) |
16 |
11 14 15
|
syl2an2r |
⊢ ( ( 𝐴 ∈ ω ∧ 𝑥 ∈ ω ) → ( 𝐴 ⊆ ( 𝐴 +o 𝑥 ) ↔ ¬ ( 𝐴 +o 𝑥 ) ∈ 𝐴 ) ) |
17 |
10 16
|
mpbid |
⊢ ( ( 𝐴 ∈ ω ∧ 𝑥 ∈ ω ) → ¬ ( 𝐴 +o 𝑥 ) ∈ 𝐴 ) |
18 |
1 5 17
|
sylancr |
⊢ ( 𝑥 ∈ 𝐵 → ¬ ( 𝐴 +o 𝑥 ) ∈ 𝐴 ) |
19 |
9 18
|
jca |
⊢ ( 𝑥 ∈ 𝐵 → ( ( 𝐴 +o 𝑥 ) ∈ ( 𝐴 +o 𝐵 ) ∧ ¬ ( 𝐴 +o 𝑥 ) ∈ 𝐴 ) ) |
20 |
|
eleq1 |
⊢ ( 𝑦 = ( 𝐴 +o 𝑥 ) → ( 𝑦 ∈ ( 𝐴 +o 𝐵 ) ↔ ( 𝐴 +o 𝑥 ) ∈ ( 𝐴 +o 𝐵 ) ) ) |
21 |
|
eleq1 |
⊢ ( 𝑦 = ( 𝐴 +o 𝑥 ) → ( 𝑦 ∈ 𝐴 ↔ ( 𝐴 +o 𝑥 ) ∈ 𝐴 ) ) |
22 |
21
|
notbid |
⊢ ( 𝑦 = ( 𝐴 +o 𝑥 ) → ( ¬ 𝑦 ∈ 𝐴 ↔ ¬ ( 𝐴 +o 𝑥 ) ∈ 𝐴 ) ) |
23 |
20 22
|
anbi12d |
⊢ ( 𝑦 = ( 𝐴 +o 𝑥 ) → ( ( 𝑦 ∈ ( 𝐴 +o 𝐵 ) ∧ ¬ 𝑦 ∈ 𝐴 ) ↔ ( ( 𝐴 +o 𝑥 ) ∈ ( 𝐴 +o 𝐵 ) ∧ ¬ ( 𝐴 +o 𝑥 ) ∈ 𝐴 ) ) ) |
24 |
23
|
biimparc |
⊢ ( ( ( ( 𝐴 +o 𝑥 ) ∈ ( 𝐴 +o 𝐵 ) ∧ ¬ ( 𝐴 +o 𝑥 ) ∈ 𝐴 ) ∧ 𝑦 = ( 𝐴 +o 𝑥 ) ) → ( 𝑦 ∈ ( 𝐴 +o 𝐵 ) ∧ ¬ 𝑦 ∈ 𝐴 ) ) |
25 |
19 24
|
sylan |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 = ( 𝐴 +o 𝑥 ) ) → ( 𝑦 ∈ ( 𝐴 +o 𝐵 ) ∧ ¬ 𝑦 ∈ 𝐴 ) ) |
26 |
25
|
rexlimiva |
⊢ ( ∃ 𝑥 ∈ 𝐵 𝑦 = ( 𝐴 +o 𝑥 ) → ( 𝑦 ∈ ( 𝐴 +o 𝐵 ) ∧ ¬ 𝑦 ∈ 𝐴 ) ) |
27 |
1 2
|
nnacli |
⊢ ( 𝐴 +o 𝐵 ) ∈ ω |
28 |
|
elnn |
⊢ ( ( 𝑦 ∈ ( 𝐴 +o 𝐵 ) ∧ ( 𝐴 +o 𝐵 ) ∈ ω ) → 𝑦 ∈ ω ) |
29 |
27 28
|
mpan2 |
⊢ ( 𝑦 ∈ ( 𝐴 +o 𝐵 ) → 𝑦 ∈ ω ) |
30 |
|
nnord |
⊢ ( 𝑦 ∈ ω → Ord 𝑦 ) |
31 |
|
ordtri1 |
⊢ ( ( Ord 𝐴 ∧ Ord 𝑦 ) → ( 𝐴 ⊆ 𝑦 ↔ ¬ 𝑦 ∈ 𝐴 ) ) |
32 |
11 30 31
|
syl2an |
⊢ ( ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) → ( 𝐴 ⊆ 𝑦 ↔ ¬ 𝑦 ∈ 𝐴 ) ) |
33 |
|
nnawordex |
⊢ ( ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) → ( 𝐴 ⊆ 𝑦 ↔ ∃ 𝑥 ∈ ω ( 𝐴 +o 𝑥 ) = 𝑦 ) ) |
34 |
32 33
|
bitr3d |
⊢ ( ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) → ( ¬ 𝑦 ∈ 𝐴 ↔ ∃ 𝑥 ∈ ω ( 𝐴 +o 𝑥 ) = 𝑦 ) ) |
35 |
1 29 34
|
sylancr |
⊢ ( 𝑦 ∈ ( 𝐴 +o 𝐵 ) → ( ¬ 𝑦 ∈ 𝐴 ↔ ∃ 𝑥 ∈ ω ( 𝐴 +o 𝑥 ) = 𝑦 ) ) |
36 |
|
eleq1 |
⊢ ( ( 𝐴 +o 𝑥 ) = 𝑦 → ( ( 𝐴 +o 𝑥 ) ∈ ( 𝐴 +o 𝐵 ) ↔ 𝑦 ∈ ( 𝐴 +o 𝐵 ) ) ) |
37 |
7 36
|
sylan9bb |
⊢ ( ( 𝑥 ∈ ω ∧ ( 𝐴 +o 𝑥 ) = 𝑦 ) → ( 𝑥 ∈ 𝐵 ↔ 𝑦 ∈ ( 𝐴 +o 𝐵 ) ) ) |
38 |
37
|
biimprcd |
⊢ ( 𝑦 ∈ ( 𝐴 +o 𝐵 ) → ( ( 𝑥 ∈ ω ∧ ( 𝐴 +o 𝑥 ) = 𝑦 ) → 𝑥 ∈ 𝐵 ) ) |
39 |
|
eqcom |
⊢ ( ( 𝐴 +o 𝑥 ) = 𝑦 ↔ 𝑦 = ( 𝐴 +o 𝑥 ) ) |
40 |
39
|
biimpi |
⊢ ( ( 𝐴 +o 𝑥 ) = 𝑦 → 𝑦 = ( 𝐴 +o 𝑥 ) ) |
41 |
40
|
adantl |
⊢ ( ( 𝑥 ∈ ω ∧ ( 𝐴 +o 𝑥 ) = 𝑦 ) → 𝑦 = ( 𝐴 +o 𝑥 ) ) |
42 |
38 41
|
jca2 |
⊢ ( 𝑦 ∈ ( 𝐴 +o 𝐵 ) → ( ( 𝑥 ∈ ω ∧ ( 𝐴 +o 𝑥 ) = 𝑦 ) → ( 𝑥 ∈ 𝐵 ∧ 𝑦 = ( 𝐴 +o 𝑥 ) ) ) ) |
43 |
42
|
reximdv2 |
⊢ ( 𝑦 ∈ ( 𝐴 +o 𝐵 ) → ( ∃ 𝑥 ∈ ω ( 𝐴 +o 𝑥 ) = 𝑦 → ∃ 𝑥 ∈ 𝐵 𝑦 = ( 𝐴 +o 𝑥 ) ) ) |
44 |
35 43
|
sylbid |
⊢ ( 𝑦 ∈ ( 𝐴 +o 𝐵 ) → ( ¬ 𝑦 ∈ 𝐴 → ∃ 𝑥 ∈ 𝐵 𝑦 = ( 𝐴 +o 𝑥 ) ) ) |
45 |
44
|
imp |
⊢ ( ( 𝑦 ∈ ( 𝐴 +o 𝐵 ) ∧ ¬ 𝑦 ∈ 𝐴 ) → ∃ 𝑥 ∈ 𝐵 𝑦 = ( 𝐴 +o 𝑥 ) ) |
46 |
26 45
|
impbii |
⊢ ( ∃ 𝑥 ∈ 𝐵 𝑦 = ( 𝐴 +o 𝑥 ) ↔ ( 𝑦 ∈ ( 𝐴 +o 𝐵 ) ∧ ¬ 𝑦 ∈ 𝐴 ) ) |
47 |
|
ovex |
⊢ ( 𝐴 +o 𝑥 ) ∈ V |
48 |
3 47
|
elrnmpti |
⊢ ( 𝑦 ∈ ran 𝐹 ↔ ∃ 𝑥 ∈ 𝐵 𝑦 = ( 𝐴 +o 𝑥 ) ) |
49 |
|
eldif |
⊢ ( 𝑦 ∈ ( ( 𝐴 +o 𝐵 ) ∖ 𝐴 ) ↔ ( 𝑦 ∈ ( 𝐴 +o 𝐵 ) ∧ ¬ 𝑦 ∈ 𝐴 ) ) |
50 |
46 48 49
|
3bitr4i |
⊢ ( 𝑦 ∈ ran 𝐹 ↔ 𝑦 ∈ ( ( 𝐴 +o 𝐵 ) ∖ 𝐴 ) ) |
51 |
50
|
eqriv |
⊢ ran 𝐹 = ( ( 𝐴 +o 𝐵 ) ∖ 𝐴 ) |