Step |
Hyp |
Ref |
Expression |
1 |
|
unfilem1.1 |
⊢ 𝐴 ∈ ω |
2 |
|
unfilem1.2 |
⊢ 𝐵 ∈ ω |
3 |
|
unfilem1.3 |
⊢ 𝐹 = ( 𝑥 ∈ 𝐵 ↦ ( 𝐴 +o 𝑥 ) ) |
4 |
|
ovex |
⊢ ( 𝐴 +o 𝑥 ) ∈ V |
5 |
4 3
|
fnmpti |
⊢ 𝐹 Fn 𝐵 |
6 |
1 2 3
|
unfilem1 |
⊢ ran 𝐹 = ( ( 𝐴 +o 𝐵 ) ∖ 𝐴 ) |
7 |
|
df-fo |
⊢ ( 𝐹 : 𝐵 –onto→ ( ( 𝐴 +o 𝐵 ) ∖ 𝐴 ) ↔ ( 𝐹 Fn 𝐵 ∧ ran 𝐹 = ( ( 𝐴 +o 𝐵 ) ∖ 𝐴 ) ) ) |
8 |
5 6 7
|
mpbir2an |
⊢ 𝐹 : 𝐵 –onto→ ( ( 𝐴 +o 𝐵 ) ∖ 𝐴 ) |
9 |
|
fof |
⊢ ( 𝐹 : 𝐵 –onto→ ( ( 𝐴 +o 𝐵 ) ∖ 𝐴 ) → 𝐹 : 𝐵 ⟶ ( ( 𝐴 +o 𝐵 ) ∖ 𝐴 ) ) |
10 |
8 9
|
ax-mp |
⊢ 𝐹 : 𝐵 ⟶ ( ( 𝐴 +o 𝐵 ) ∖ 𝐴 ) |
11 |
|
oveq2 |
⊢ ( 𝑥 = 𝑧 → ( 𝐴 +o 𝑥 ) = ( 𝐴 +o 𝑧 ) ) |
12 |
|
ovex |
⊢ ( 𝐴 +o 𝑧 ) ∈ V |
13 |
11 3 12
|
fvmpt |
⊢ ( 𝑧 ∈ 𝐵 → ( 𝐹 ‘ 𝑧 ) = ( 𝐴 +o 𝑧 ) ) |
14 |
|
oveq2 |
⊢ ( 𝑥 = 𝑤 → ( 𝐴 +o 𝑥 ) = ( 𝐴 +o 𝑤 ) ) |
15 |
|
ovex |
⊢ ( 𝐴 +o 𝑤 ) ∈ V |
16 |
14 3 15
|
fvmpt |
⊢ ( 𝑤 ∈ 𝐵 → ( 𝐹 ‘ 𝑤 ) = ( 𝐴 +o 𝑤 ) ) |
17 |
13 16
|
eqeqan12d |
⊢ ( ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) → ( ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ↔ ( 𝐴 +o 𝑧 ) = ( 𝐴 +o 𝑤 ) ) ) |
18 |
|
elnn |
⊢ ( ( 𝑧 ∈ 𝐵 ∧ 𝐵 ∈ ω ) → 𝑧 ∈ ω ) |
19 |
2 18
|
mpan2 |
⊢ ( 𝑧 ∈ 𝐵 → 𝑧 ∈ ω ) |
20 |
|
elnn |
⊢ ( ( 𝑤 ∈ 𝐵 ∧ 𝐵 ∈ ω ) → 𝑤 ∈ ω ) |
21 |
2 20
|
mpan2 |
⊢ ( 𝑤 ∈ 𝐵 → 𝑤 ∈ ω ) |
22 |
|
nnacan |
⊢ ( ( 𝐴 ∈ ω ∧ 𝑧 ∈ ω ∧ 𝑤 ∈ ω ) → ( ( 𝐴 +o 𝑧 ) = ( 𝐴 +o 𝑤 ) ↔ 𝑧 = 𝑤 ) ) |
23 |
1 19 21 22
|
mp3an3an |
⊢ ( ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) → ( ( 𝐴 +o 𝑧 ) = ( 𝐴 +o 𝑤 ) ↔ 𝑧 = 𝑤 ) ) |
24 |
17 23
|
bitrd |
⊢ ( ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) → ( ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ↔ 𝑧 = 𝑤 ) ) |
25 |
24
|
biimpd |
⊢ ( ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) → ( ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) → 𝑧 = 𝑤 ) ) |
26 |
25
|
rgen2 |
⊢ ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) → 𝑧 = 𝑤 ) |
27 |
|
dff13 |
⊢ ( 𝐹 : 𝐵 –1-1→ ( ( 𝐴 +o 𝐵 ) ∖ 𝐴 ) ↔ ( 𝐹 : 𝐵 ⟶ ( ( 𝐴 +o 𝐵 ) ∖ 𝐴 ) ∧ ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) → 𝑧 = 𝑤 ) ) ) |
28 |
10 26 27
|
mpbir2an |
⊢ 𝐹 : 𝐵 –1-1→ ( ( 𝐴 +o 𝐵 ) ∖ 𝐴 ) |
29 |
|
df-f1o |
⊢ ( 𝐹 : 𝐵 –1-1-onto→ ( ( 𝐴 +o 𝐵 ) ∖ 𝐴 ) ↔ ( 𝐹 : 𝐵 –1-1→ ( ( 𝐴 +o 𝐵 ) ∖ 𝐴 ) ∧ 𝐹 : 𝐵 –onto→ ( ( 𝐴 +o 𝐵 ) ∖ 𝐴 ) ) ) |
30 |
28 8 29
|
mpbir2an |
⊢ 𝐹 : 𝐵 –1-1-onto→ ( ( 𝐴 +o 𝐵 ) ∖ 𝐴 ) |