Metamath Proof Explorer


Theorem unfir

Description: If a union is finite, the operands are finite. Converse of unfi . (Contributed by FL, 3-Aug-2009)

Ref Expression
Assertion unfir ( ( 𝐴𝐵 ) ∈ Fin → ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) )

Proof

Step Hyp Ref Expression
1 ssun1 𝐴 ⊆ ( 𝐴𝐵 )
2 ssfi ( ( ( 𝐴𝐵 ) ∈ Fin ∧ 𝐴 ⊆ ( 𝐴𝐵 ) ) → 𝐴 ∈ Fin )
3 1 2 mpan2 ( ( 𝐴𝐵 ) ∈ Fin → 𝐴 ∈ Fin )
4 ssun2 𝐵 ⊆ ( 𝐴𝐵 )
5 ssfi ( ( ( 𝐴𝐵 ) ∈ Fin ∧ 𝐵 ⊆ ( 𝐴𝐵 ) ) → 𝐵 ∈ Fin )
6 4 5 mpan2 ( ( 𝐴𝐵 ) ∈ Fin → 𝐵 ∈ Fin )
7 3 6 jca ( ( 𝐴𝐵 ) ∈ Fin → ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) )