Step |
Hyp |
Ref |
Expression |
1 |
|
velsn |
⊢ ( 𝑥 ∈ { ∅ } ↔ 𝑥 = ∅ ) |
2 |
1
|
ralbii |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝑥 ∈ { ∅ } ↔ ∀ 𝑥 ∈ 𝐴 𝑥 = ∅ ) |
3 |
|
dfss3 |
⊢ ( 𝐴 ⊆ { ∅ } ↔ ∀ 𝑥 ∈ 𝐴 𝑥 ∈ { ∅ } ) |
4 |
|
neq0 |
⊢ ( ¬ ∪ 𝐴 = ∅ ↔ ∃ 𝑦 𝑦 ∈ ∪ 𝐴 ) |
5 |
|
rexcom4 |
⊢ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 𝑦 ∈ 𝑥 ↔ ∃ 𝑦 ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝑥 ) |
6 |
|
neq0 |
⊢ ( ¬ 𝑥 = ∅ ↔ ∃ 𝑦 𝑦 ∈ 𝑥 ) |
7 |
6
|
rexbii |
⊢ ( ∃ 𝑥 ∈ 𝐴 ¬ 𝑥 = ∅ ↔ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 𝑦 ∈ 𝑥 ) |
8 |
|
eluni2 |
⊢ ( 𝑦 ∈ ∪ 𝐴 ↔ ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝑥 ) |
9 |
8
|
exbii |
⊢ ( ∃ 𝑦 𝑦 ∈ ∪ 𝐴 ↔ ∃ 𝑦 ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝑥 ) |
10 |
5 7 9
|
3bitr4ri |
⊢ ( ∃ 𝑦 𝑦 ∈ ∪ 𝐴 ↔ ∃ 𝑥 ∈ 𝐴 ¬ 𝑥 = ∅ ) |
11 |
|
rexnal |
⊢ ( ∃ 𝑥 ∈ 𝐴 ¬ 𝑥 = ∅ ↔ ¬ ∀ 𝑥 ∈ 𝐴 𝑥 = ∅ ) |
12 |
4 10 11
|
3bitri |
⊢ ( ¬ ∪ 𝐴 = ∅ ↔ ¬ ∀ 𝑥 ∈ 𝐴 𝑥 = ∅ ) |
13 |
12
|
con4bii |
⊢ ( ∪ 𝐴 = ∅ ↔ ∀ 𝑥 ∈ 𝐴 𝑥 = ∅ ) |
14 |
2 3 13
|
3bitr4ri |
⊢ ( ∪ 𝐴 = ∅ ↔ 𝐴 ⊆ { ∅ } ) |