Metamath Proof Explorer


Theorem uni0b

Description: The union of a set is empty iff the set is included in the singleton of the empty set. (Contributed by NM, 12-Sep-2004)

Ref Expression
Assertion uni0b ( 𝐴 = ∅ ↔ 𝐴 ⊆ { ∅ } )

Proof

Step Hyp Ref Expression
1 velsn ( 𝑥 ∈ { ∅ } ↔ 𝑥 = ∅ )
2 1 ralbii ( ∀ 𝑥𝐴 𝑥 ∈ { ∅ } ↔ ∀ 𝑥𝐴 𝑥 = ∅ )
3 dfss3 ( 𝐴 ⊆ { ∅ } ↔ ∀ 𝑥𝐴 𝑥 ∈ { ∅ } )
4 neq0 ( ¬ 𝐴 = ∅ ↔ ∃ 𝑦 𝑦 𝐴 )
5 rexcom4 ( ∃ 𝑥𝐴𝑦 𝑦𝑥 ↔ ∃ 𝑦𝑥𝐴 𝑦𝑥 )
6 neq0 ( ¬ 𝑥 = ∅ ↔ ∃ 𝑦 𝑦𝑥 )
7 6 rexbii ( ∃ 𝑥𝐴 ¬ 𝑥 = ∅ ↔ ∃ 𝑥𝐴𝑦 𝑦𝑥 )
8 eluni2 ( 𝑦 𝐴 ↔ ∃ 𝑥𝐴 𝑦𝑥 )
9 8 exbii ( ∃ 𝑦 𝑦 𝐴 ↔ ∃ 𝑦𝑥𝐴 𝑦𝑥 )
10 5 7 9 3bitr4ri ( ∃ 𝑦 𝑦 𝐴 ↔ ∃ 𝑥𝐴 ¬ 𝑥 = ∅ )
11 rexnal ( ∃ 𝑥𝐴 ¬ 𝑥 = ∅ ↔ ¬ ∀ 𝑥𝐴 𝑥 = ∅ )
12 4 10 11 3bitri ( ¬ 𝐴 = ∅ ↔ ¬ ∀ 𝑥𝐴 𝑥 = ∅ )
13 12 con4bii ( 𝐴 = ∅ ↔ ∀ 𝑥𝐴 𝑥 = ∅ )
14 2 3 13 3bitr4ri ( 𝐴 = ∅ ↔ 𝐴 ⊆ { ∅ } )