Description: Part of Theorem 8.17 in Quine p. 56. This theorem serves as a lemma for the fundamental property of iota. (Contributed by Andrew Salmon, 11-Jul-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | uniabio | ⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) → ∪ { 𝑥 ∣ 𝜑 } = 𝑦 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abbi1 | ⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) → { 𝑥 ∣ 𝜑 } = { 𝑥 ∣ 𝑥 = 𝑦 } ) | |
2 | df-sn | ⊢ { 𝑦 } = { 𝑥 ∣ 𝑥 = 𝑦 } | |
3 | 1 2 | eqtr4di | ⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) → { 𝑥 ∣ 𝜑 } = { 𝑦 } ) |
4 | 3 | unieqd | ⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) → ∪ { 𝑥 ∣ 𝜑 } = ∪ { 𝑦 } ) |
5 | vex | ⊢ 𝑦 ∈ V | |
6 | 5 | unisn | ⊢ ∪ { 𝑦 } = 𝑦 |
7 | 4 6 | eqtrdi | ⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) → ∪ { 𝑥 ∣ 𝜑 } = 𝑦 ) |