Description: If the difference A \ B contains the largest members of A , then the union of the difference is the union of A . (Contributed by NM, 22-Mar-2004)
Ref | Expression | ||
---|---|---|---|
Assertion | unidif | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ ( 𝐴 ∖ 𝐵 ) 𝑥 ⊆ 𝑦 → ∪ ( 𝐴 ∖ 𝐵 ) = ∪ 𝐴 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniss2 | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ ( 𝐴 ∖ 𝐵 ) 𝑥 ⊆ 𝑦 → ∪ 𝐴 ⊆ ∪ ( 𝐴 ∖ 𝐵 ) ) | |
2 | difss | ⊢ ( 𝐴 ∖ 𝐵 ) ⊆ 𝐴 | |
3 | 2 | unissi | ⊢ ∪ ( 𝐴 ∖ 𝐵 ) ⊆ ∪ 𝐴 |
4 | 1 3 | jctil | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ ( 𝐴 ∖ 𝐵 ) 𝑥 ⊆ 𝑦 → ( ∪ ( 𝐴 ∖ 𝐵 ) ⊆ ∪ 𝐴 ∧ ∪ 𝐴 ⊆ ∪ ( 𝐴 ∖ 𝐵 ) ) ) |
5 | eqss | ⊢ ( ∪ ( 𝐴 ∖ 𝐵 ) = ∪ 𝐴 ↔ ( ∪ ( 𝐴 ∖ 𝐵 ) ⊆ ∪ 𝐴 ∧ ∪ 𝐴 ⊆ ∪ ( 𝐴 ∖ 𝐵 ) ) ) | |
6 | 4 5 | sylibr | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ ( 𝐴 ∖ 𝐵 ) 𝑥 ⊆ 𝑦 → ∪ ( 𝐴 ∖ 𝐵 ) = ∪ 𝐴 ) |