Metamath Proof Explorer


Theorem unidif

Description: If the difference A \ B contains the largest members of A , then the union of the difference is the union of A . (Contributed by NM, 22-Mar-2004)

Ref Expression
Assertion unidif ( ∀ 𝑥𝐴𝑦 ∈ ( 𝐴𝐵 ) 𝑥𝑦 ( 𝐴𝐵 ) = 𝐴 )

Proof

Step Hyp Ref Expression
1 uniss2 ( ∀ 𝑥𝐴𝑦 ∈ ( 𝐴𝐵 ) 𝑥𝑦 𝐴 ( 𝐴𝐵 ) )
2 difss ( 𝐴𝐵 ) ⊆ 𝐴
3 2 unissi ( 𝐴𝐵 ) ⊆ 𝐴
4 1 3 jctil ( ∀ 𝑥𝐴𝑦 ∈ ( 𝐴𝐵 ) 𝑥𝑦 → ( ( 𝐴𝐵 ) ⊆ 𝐴 𝐴 ( 𝐴𝐵 ) ) )
5 eqss ( ( 𝐴𝐵 ) = 𝐴 ↔ ( ( 𝐴𝐵 ) ⊆ 𝐴 𝐴 ( 𝐴𝐵 ) ) )
6 4 5 sylibr ( ∀ 𝑥𝐴𝑦 ∈ ( 𝐴𝐵 ) 𝑥𝑦 ( 𝐴𝐵 ) = 𝐴 )