Metamath Proof Explorer


Theorem unidifsnel

Description: The other element of a pair is an element of the pair. (Contributed by Thierry Arnoux, 26-Aug-2017)

Ref Expression
Assertion unidifsnel ( ( 𝑋𝑃𝑃 ≈ 2o ) → ( 𝑃 ∖ { 𝑋 } ) ∈ 𝑃 )

Proof

Step Hyp Ref Expression
1 2onn 2o ∈ ω
2 nnfi ( 2o ∈ ω → 2o ∈ Fin )
3 1 2 ax-mp 2o ∈ Fin
4 enfi ( 𝑃 ≈ 2o → ( 𝑃 ∈ Fin ↔ 2o ∈ Fin ) )
5 3 4 mpbiri ( 𝑃 ≈ 2o𝑃 ∈ Fin )
6 5 adantl ( ( 𝑋𝑃𝑃 ≈ 2o ) → 𝑃 ∈ Fin )
7 diffi ( 𝑃 ∈ Fin → ( 𝑃 ∖ { 𝑋 } ) ∈ Fin )
8 6 7 syl ( ( 𝑋𝑃𝑃 ≈ 2o ) → ( 𝑃 ∖ { 𝑋 } ) ∈ Fin )
9 8 cardidd ( ( 𝑋𝑃𝑃 ≈ 2o ) → ( card ‘ ( 𝑃 ∖ { 𝑋 } ) ) ≈ ( 𝑃 ∖ { 𝑋 } ) )
10 9 ensymd ( ( 𝑋𝑃𝑃 ≈ 2o ) → ( 𝑃 ∖ { 𝑋 } ) ≈ ( card ‘ ( 𝑃 ∖ { 𝑋 } ) ) )
11 simpl ( ( 𝑋𝑃𝑃 ≈ 2o ) → 𝑋𝑃 )
12 dif1card ( ( 𝑃 ∈ Fin ∧ 𝑋𝑃 ) → ( card ‘ 𝑃 ) = suc ( card ‘ ( 𝑃 ∖ { 𝑋 } ) ) )
13 6 11 12 syl2anc ( ( 𝑋𝑃𝑃 ≈ 2o ) → ( card ‘ 𝑃 ) = suc ( card ‘ ( 𝑃 ∖ { 𝑋 } ) ) )
14 cardennn ( ( 𝑃 ≈ 2o ∧ 2o ∈ ω ) → ( card ‘ 𝑃 ) = 2o )
15 1 14 mpan2 ( 𝑃 ≈ 2o → ( card ‘ 𝑃 ) = 2o )
16 df-2o 2o = suc 1o
17 15 16 eqtrdi ( 𝑃 ≈ 2o → ( card ‘ 𝑃 ) = suc 1o )
18 17 adantl ( ( 𝑋𝑃𝑃 ≈ 2o ) → ( card ‘ 𝑃 ) = suc 1o )
19 13 18 eqtr3d ( ( 𝑋𝑃𝑃 ≈ 2o ) → suc ( card ‘ ( 𝑃 ∖ { 𝑋 } ) ) = suc 1o )
20 suc11reg ( suc ( card ‘ ( 𝑃 ∖ { 𝑋 } ) ) = suc 1o ↔ ( card ‘ ( 𝑃 ∖ { 𝑋 } ) ) = 1o )
21 19 20 sylib ( ( 𝑋𝑃𝑃 ≈ 2o ) → ( card ‘ ( 𝑃 ∖ { 𝑋 } ) ) = 1o )
22 10 21 breqtrd ( ( 𝑋𝑃𝑃 ≈ 2o ) → ( 𝑃 ∖ { 𝑋 } ) ≈ 1o )
23 en1 ( ( 𝑃 ∖ { 𝑋 } ) ≈ 1o ↔ ∃ 𝑥 ( 𝑃 ∖ { 𝑋 } ) = { 𝑥 } )
24 22 23 sylib ( ( 𝑋𝑃𝑃 ≈ 2o ) → ∃ 𝑥 ( 𝑃 ∖ { 𝑋 } ) = { 𝑥 } )
25 simpr ( ( ( 𝑋𝑃𝑃 ≈ 2o ) ∧ ( 𝑃 ∖ { 𝑋 } ) = { 𝑥 } ) → ( 𝑃 ∖ { 𝑋 } ) = { 𝑥 } )
26 25 unieqd ( ( ( 𝑋𝑃𝑃 ≈ 2o ) ∧ ( 𝑃 ∖ { 𝑋 } ) = { 𝑥 } ) → ( 𝑃 ∖ { 𝑋 } ) = { 𝑥 } )
27 vex 𝑥 ∈ V
28 27 unisn { 𝑥 } = 𝑥
29 26 28 eqtrdi ( ( ( 𝑋𝑃𝑃 ≈ 2o ) ∧ ( 𝑃 ∖ { 𝑋 } ) = { 𝑥 } ) → ( 𝑃 ∖ { 𝑋 } ) = 𝑥 )
30 difssd ( ( ( 𝑋𝑃𝑃 ≈ 2o ) ∧ ( 𝑃 ∖ { 𝑋 } ) = { 𝑥 } ) → ( 𝑃 ∖ { 𝑋 } ) ⊆ 𝑃 )
31 25 30 eqsstrrd ( ( ( 𝑋𝑃𝑃 ≈ 2o ) ∧ ( 𝑃 ∖ { 𝑋 } ) = { 𝑥 } ) → { 𝑥 } ⊆ 𝑃 )
32 vsnid 𝑥 ∈ { 𝑥 }
33 ssel2 ( ( { 𝑥 } ⊆ 𝑃𝑥 ∈ { 𝑥 } ) → 𝑥𝑃 )
34 31 32 33 sylancl ( ( ( 𝑋𝑃𝑃 ≈ 2o ) ∧ ( 𝑃 ∖ { 𝑋 } ) = { 𝑥 } ) → 𝑥𝑃 )
35 29 34 eqeltrd ( ( ( 𝑋𝑃𝑃 ≈ 2o ) ∧ ( 𝑃 ∖ { 𝑋 } ) = { 𝑥 } ) → ( 𝑃 ∖ { 𝑋 } ) ∈ 𝑃 )
36 24 35 exlimddv ( ( 𝑋𝑃𝑃 ≈ 2o ) → ( 𝑃 ∖ { 𝑋 } ) ∈ 𝑃 )