Step |
Hyp |
Ref |
Expression |
1 |
|
2onn |
⊢ 2o ∈ ω |
2 |
|
nnfi |
⊢ ( 2o ∈ ω → 2o ∈ Fin ) |
3 |
1 2
|
ax-mp |
⊢ 2o ∈ Fin |
4 |
|
enfi |
⊢ ( 𝑃 ≈ 2o → ( 𝑃 ∈ Fin ↔ 2o ∈ Fin ) ) |
5 |
3 4
|
mpbiri |
⊢ ( 𝑃 ≈ 2o → 𝑃 ∈ Fin ) |
6 |
5
|
adantl |
⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o ) → 𝑃 ∈ Fin ) |
7 |
|
diffi |
⊢ ( 𝑃 ∈ Fin → ( 𝑃 ∖ { 𝑋 } ) ∈ Fin ) |
8 |
6 7
|
syl |
⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o ) → ( 𝑃 ∖ { 𝑋 } ) ∈ Fin ) |
9 |
8
|
cardidd |
⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o ) → ( card ‘ ( 𝑃 ∖ { 𝑋 } ) ) ≈ ( 𝑃 ∖ { 𝑋 } ) ) |
10 |
9
|
ensymd |
⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o ) → ( 𝑃 ∖ { 𝑋 } ) ≈ ( card ‘ ( 𝑃 ∖ { 𝑋 } ) ) ) |
11 |
|
simpl |
⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o ) → 𝑋 ∈ 𝑃 ) |
12 |
|
dif1card |
⊢ ( ( 𝑃 ∈ Fin ∧ 𝑋 ∈ 𝑃 ) → ( card ‘ 𝑃 ) = suc ( card ‘ ( 𝑃 ∖ { 𝑋 } ) ) ) |
13 |
6 11 12
|
syl2anc |
⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o ) → ( card ‘ 𝑃 ) = suc ( card ‘ ( 𝑃 ∖ { 𝑋 } ) ) ) |
14 |
|
cardennn |
⊢ ( ( 𝑃 ≈ 2o ∧ 2o ∈ ω ) → ( card ‘ 𝑃 ) = 2o ) |
15 |
1 14
|
mpan2 |
⊢ ( 𝑃 ≈ 2o → ( card ‘ 𝑃 ) = 2o ) |
16 |
|
df-2o |
⊢ 2o = suc 1o |
17 |
15 16
|
eqtrdi |
⊢ ( 𝑃 ≈ 2o → ( card ‘ 𝑃 ) = suc 1o ) |
18 |
17
|
adantl |
⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o ) → ( card ‘ 𝑃 ) = suc 1o ) |
19 |
13 18
|
eqtr3d |
⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o ) → suc ( card ‘ ( 𝑃 ∖ { 𝑋 } ) ) = suc 1o ) |
20 |
|
suc11reg |
⊢ ( suc ( card ‘ ( 𝑃 ∖ { 𝑋 } ) ) = suc 1o ↔ ( card ‘ ( 𝑃 ∖ { 𝑋 } ) ) = 1o ) |
21 |
19 20
|
sylib |
⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o ) → ( card ‘ ( 𝑃 ∖ { 𝑋 } ) ) = 1o ) |
22 |
10 21
|
breqtrd |
⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o ) → ( 𝑃 ∖ { 𝑋 } ) ≈ 1o ) |
23 |
|
en1 |
⊢ ( ( 𝑃 ∖ { 𝑋 } ) ≈ 1o ↔ ∃ 𝑥 ( 𝑃 ∖ { 𝑋 } ) = { 𝑥 } ) |
24 |
22 23
|
sylib |
⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o ) → ∃ 𝑥 ( 𝑃 ∖ { 𝑋 } ) = { 𝑥 } ) |
25 |
|
simpr |
⊢ ( ( ( 𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o ) ∧ ( 𝑃 ∖ { 𝑋 } ) = { 𝑥 } ) → ( 𝑃 ∖ { 𝑋 } ) = { 𝑥 } ) |
26 |
25
|
unieqd |
⊢ ( ( ( 𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o ) ∧ ( 𝑃 ∖ { 𝑋 } ) = { 𝑥 } ) → ∪ ( 𝑃 ∖ { 𝑋 } ) = ∪ { 𝑥 } ) |
27 |
|
vex |
⊢ 𝑥 ∈ V |
28 |
27
|
unisn |
⊢ ∪ { 𝑥 } = 𝑥 |
29 |
26 28
|
eqtrdi |
⊢ ( ( ( 𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o ) ∧ ( 𝑃 ∖ { 𝑋 } ) = { 𝑥 } ) → ∪ ( 𝑃 ∖ { 𝑋 } ) = 𝑥 ) |
30 |
|
difssd |
⊢ ( ( ( 𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o ) ∧ ( 𝑃 ∖ { 𝑋 } ) = { 𝑥 } ) → ( 𝑃 ∖ { 𝑋 } ) ⊆ 𝑃 ) |
31 |
25 30
|
eqsstrrd |
⊢ ( ( ( 𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o ) ∧ ( 𝑃 ∖ { 𝑋 } ) = { 𝑥 } ) → { 𝑥 } ⊆ 𝑃 ) |
32 |
|
vsnid |
⊢ 𝑥 ∈ { 𝑥 } |
33 |
|
ssel2 |
⊢ ( ( { 𝑥 } ⊆ 𝑃 ∧ 𝑥 ∈ { 𝑥 } ) → 𝑥 ∈ 𝑃 ) |
34 |
31 32 33
|
sylancl |
⊢ ( ( ( 𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o ) ∧ ( 𝑃 ∖ { 𝑋 } ) = { 𝑥 } ) → 𝑥 ∈ 𝑃 ) |
35 |
29 34
|
eqeltrd |
⊢ ( ( ( 𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o ) ∧ ( 𝑃 ∖ { 𝑋 } ) = { 𝑥 } ) → ∪ ( 𝑃 ∖ { 𝑋 } ) ∈ 𝑃 ) |
36 |
24 35
|
exlimddv |
⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o ) → ∪ ( 𝑃 ∖ { 𝑋 } ) ∈ 𝑃 ) |