Step |
Hyp |
Ref |
Expression |
1 |
|
2onn |
⊢ 2o ∈ ω |
2 |
|
nnfi |
⊢ ( 2o ∈ ω → 2o ∈ Fin ) |
3 |
1 2
|
ax-mp |
⊢ 2o ∈ Fin |
4 |
|
enfi |
⊢ ( 𝑃 ≈ 2o → ( 𝑃 ∈ Fin ↔ 2o ∈ Fin ) ) |
5 |
3 4
|
mpbiri |
⊢ ( 𝑃 ≈ 2o → 𝑃 ∈ Fin ) |
6 |
5
|
adantl |
⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o ) → 𝑃 ∈ Fin ) |
7 |
|
diffi |
⊢ ( 𝑃 ∈ Fin → ( 𝑃 ∖ { 𝑋 } ) ∈ Fin ) |
8 |
6 7
|
syl |
⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o ) → ( 𝑃 ∖ { 𝑋 } ) ∈ Fin ) |
9 |
8
|
cardidd |
⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o ) → ( card ‘ ( 𝑃 ∖ { 𝑋 } ) ) ≈ ( 𝑃 ∖ { 𝑋 } ) ) |
10 |
9
|
ensymd |
⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o ) → ( 𝑃 ∖ { 𝑋 } ) ≈ ( card ‘ ( 𝑃 ∖ { 𝑋 } ) ) ) |
11 |
|
simpl |
⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o ) → 𝑋 ∈ 𝑃 ) |
12 |
|
dif1card |
⊢ ( ( 𝑃 ∈ Fin ∧ 𝑋 ∈ 𝑃 ) → ( card ‘ 𝑃 ) = suc ( card ‘ ( 𝑃 ∖ { 𝑋 } ) ) ) |
13 |
6 11 12
|
syl2anc |
⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o ) → ( card ‘ 𝑃 ) = suc ( card ‘ ( 𝑃 ∖ { 𝑋 } ) ) ) |
14 |
|
cardennn |
⊢ ( ( 𝑃 ≈ 2o ∧ 2o ∈ ω ) → ( card ‘ 𝑃 ) = 2o ) |
15 |
1 14
|
mpan2 |
⊢ ( 𝑃 ≈ 2o → ( card ‘ 𝑃 ) = 2o ) |
16 |
|
df-2o |
⊢ 2o = suc 1o |
17 |
15 16
|
eqtrdi |
⊢ ( 𝑃 ≈ 2o → ( card ‘ 𝑃 ) = suc 1o ) |
18 |
17
|
adantl |
⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o ) → ( card ‘ 𝑃 ) = suc 1o ) |
19 |
13 18
|
eqtr3d |
⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o ) → suc ( card ‘ ( 𝑃 ∖ { 𝑋 } ) ) = suc 1o ) |
20 |
|
suc11reg |
⊢ ( suc ( card ‘ ( 𝑃 ∖ { 𝑋 } ) ) = suc 1o ↔ ( card ‘ ( 𝑃 ∖ { 𝑋 } ) ) = 1o ) |
21 |
19 20
|
sylib |
⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o ) → ( card ‘ ( 𝑃 ∖ { 𝑋 } ) ) = 1o ) |
22 |
10 21
|
breqtrd |
⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o ) → ( 𝑃 ∖ { 𝑋 } ) ≈ 1o ) |
23 |
|
en1 |
⊢ ( ( 𝑃 ∖ { 𝑋 } ) ≈ 1o ↔ ∃ 𝑥 ( 𝑃 ∖ { 𝑋 } ) = { 𝑥 } ) |
24 |
22 23
|
sylib |
⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o ) → ∃ 𝑥 ( 𝑃 ∖ { 𝑋 } ) = { 𝑥 } ) |
25 |
|
simplll |
⊢ ( ( ( ( 𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o ) ∧ ( 𝑃 ∖ { 𝑋 } ) = { 𝑥 } ) ∧ 𝑋 = 𝑥 ) → 𝑋 ∈ 𝑃 ) |
26 |
25
|
elexd |
⊢ ( ( ( ( 𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o ) ∧ ( 𝑃 ∖ { 𝑋 } ) = { 𝑥 } ) ∧ 𝑋 = 𝑥 ) → 𝑋 ∈ V ) |
27 |
|
simplr |
⊢ ( ( ( ( 𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o ) ∧ ( 𝑃 ∖ { 𝑋 } ) = { 𝑥 } ) ∧ 𝑋 = 𝑥 ) → ( 𝑃 ∖ { 𝑋 } ) = { 𝑥 } ) |
28 |
|
sneqbg |
⊢ ( 𝑋 ∈ 𝑃 → ( { 𝑋 } = { 𝑥 } ↔ 𝑋 = 𝑥 ) ) |
29 |
28
|
biimpar |
⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑋 = 𝑥 ) → { 𝑋 } = { 𝑥 } ) |
30 |
29
|
ad4ant14 |
⊢ ( ( ( ( 𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o ) ∧ ( 𝑃 ∖ { 𝑋 } ) = { 𝑥 } ) ∧ 𝑋 = 𝑥 ) → { 𝑋 } = { 𝑥 } ) |
31 |
27 30
|
eqtr4d |
⊢ ( ( ( ( 𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o ) ∧ ( 𝑃 ∖ { 𝑋 } ) = { 𝑥 } ) ∧ 𝑋 = 𝑥 ) → ( 𝑃 ∖ { 𝑋 } ) = { 𝑋 } ) |
32 |
31
|
ineq2d |
⊢ ( ( ( ( 𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o ) ∧ ( 𝑃 ∖ { 𝑋 } ) = { 𝑥 } ) ∧ 𝑋 = 𝑥 ) → ( { 𝑋 } ∩ ( 𝑃 ∖ { 𝑋 } ) ) = ( { 𝑋 } ∩ { 𝑋 } ) ) |
33 |
|
disjdif |
⊢ ( { 𝑋 } ∩ ( 𝑃 ∖ { 𝑋 } ) ) = ∅ |
34 |
|
inidm |
⊢ ( { 𝑋 } ∩ { 𝑋 } ) = { 𝑋 } |
35 |
32 33 34
|
3eqtr3g |
⊢ ( ( ( ( 𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o ) ∧ ( 𝑃 ∖ { 𝑋 } ) = { 𝑥 } ) ∧ 𝑋 = 𝑥 ) → ∅ = { 𝑋 } ) |
36 |
35
|
eqcomd |
⊢ ( ( ( ( 𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o ) ∧ ( 𝑃 ∖ { 𝑋 } ) = { 𝑥 } ) ∧ 𝑋 = 𝑥 ) → { 𝑋 } = ∅ ) |
37 |
|
snprc |
⊢ ( ¬ 𝑋 ∈ V ↔ { 𝑋 } = ∅ ) |
38 |
36 37
|
sylibr |
⊢ ( ( ( ( 𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o ) ∧ ( 𝑃 ∖ { 𝑋 } ) = { 𝑥 } ) ∧ 𝑋 = 𝑥 ) → ¬ 𝑋 ∈ V ) |
39 |
26 38
|
pm2.65da |
⊢ ( ( ( 𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o ) ∧ ( 𝑃 ∖ { 𝑋 } ) = { 𝑥 } ) → ¬ 𝑋 = 𝑥 ) |
40 |
39
|
neqned |
⊢ ( ( ( 𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o ) ∧ ( 𝑃 ∖ { 𝑋 } ) = { 𝑥 } ) → 𝑋 ≠ 𝑥 ) |
41 |
|
simpr |
⊢ ( ( ( 𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o ) ∧ ( 𝑃 ∖ { 𝑋 } ) = { 𝑥 } ) → ( 𝑃 ∖ { 𝑋 } ) = { 𝑥 } ) |
42 |
41
|
unieqd |
⊢ ( ( ( 𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o ) ∧ ( 𝑃 ∖ { 𝑋 } ) = { 𝑥 } ) → ∪ ( 𝑃 ∖ { 𝑋 } ) = ∪ { 𝑥 } ) |
43 |
|
vex |
⊢ 𝑥 ∈ V |
44 |
43
|
unisn |
⊢ ∪ { 𝑥 } = 𝑥 |
45 |
42 44
|
eqtrdi |
⊢ ( ( ( 𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o ) ∧ ( 𝑃 ∖ { 𝑋 } ) = { 𝑥 } ) → ∪ ( 𝑃 ∖ { 𝑋 } ) = 𝑥 ) |
46 |
40 45
|
neeqtrrd |
⊢ ( ( ( 𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o ) ∧ ( 𝑃 ∖ { 𝑋 } ) = { 𝑥 } ) → 𝑋 ≠ ∪ ( 𝑃 ∖ { 𝑋 } ) ) |
47 |
46
|
necomd |
⊢ ( ( ( 𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o ) ∧ ( 𝑃 ∖ { 𝑋 } ) = { 𝑥 } ) → ∪ ( 𝑃 ∖ { 𝑋 } ) ≠ 𝑋 ) |
48 |
24 47
|
exlimddv |
⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o ) → ∪ ( 𝑃 ∖ { 𝑋 } ) ≠ 𝑋 ) |