Metamath Proof Explorer


Theorem unidm

Description: Idempotent law for union of classes. Theorem 23 of Suppes p. 27. (Contributed by NM, 21-Jun-1993)

Ref Expression
Assertion unidm ( 𝐴𝐴 ) = 𝐴

Proof

Step Hyp Ref Expression
1 oridm ( ( 𝑥𝐴𝑥𝐴 ) ↔ 𝑥𝐴 )
2 1 uneqri ( 𝐴𝐴 ) = 𝐴