Metamath Proof Explorer
Description: If F is a set, then U. dom F is a set. (Contributed by Glauco
Siliprandi, 17-Aug-2020)
|
|
Ref |
Expression |
|
Hypotheses |
unidmex.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝑉 ) |
|
|
unidmex.x |
⊢ 𝑋 = ∪ dom 𝐹 |
|
Assertion |
unidmex |
⊢ ( 𝜑 → 𝑋 ∈ V ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
unidmex.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝑉 ) |
2 |
|
unidmex.x |
⊢ 𝑋 = ∪ dom 𝐹 |
3 |
|
dmexg |
⊢ ( 𝐹 ∈ 𝑉 → dom 𝐹 ∈ V ) |
4 |
|
uniexg |
⊢ ( dom 𝐹 ∈ V → ∪ dom 𝐹 ∈ V ) |
5 |
1 3 4
|
3syl |
⊢ ( 𝜑 → ∪ dom 𝐹 ∈ V ) |
6 |
2 5
|
eqeltrid |
⊢ ( 𝜑 → 𝑋 ∈ V ) |