Metamath Proof Explorer


Theorem unidmex

Description: If F is a set, then U. dom F is a set. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses unidmex.f ( 𝜑𝐹𝑉 )
unidmex.x 𝑋 = dom 𝐹
Assertion unidmex ( 𝜑𝑋 ∈ V )

Proof

Step Hyp Ref Expression
1 unidmex.f ( 𝜑𝐹𝑉 )
2 unidmex.x 𝑋 = dom 𝐹
3 dmexg ( 𝐹𝑉 → dom 𝐹 ∈ V )
4 uniexg ( dom 𝐹 ∈ V → dom 𝐹 ∈ V )
5 1 3 4 3syl ( 𝜑 dom 𝐹 ∈ V )
6 2 5 eqeltrid ( 𝜑𝑋 ∈ V )