Metamath Proof Explorer


Theorem unidmvol

Description: The union of the Lebesgue measurable sets is RR . (Contributed by Thierry Arnoux, 30-Jan-2017)

Ref Expression
Assertion unidmvol dom vol = ℝ

Proof

Step Hyp Ref Expression
1 unissb ( dom vol ⊆ ℝ ↔ ∀ 𝑥 ∈ dom vol 𝑥 ⊆ ℝ )
2 mblss ( 𝑥 ∈ dom vol → 𝑥 ⊆ ℝ )
3 1 2 mprgbir dom vol ⊆ ℝ
4 rembl ℝ ∈ dom vol
5 unissel ( ( dom vol ⊆ ℝ ∧ ℝ ∈ dom vol ) → dom vol = ℝ )
6 3 4 5 mp2an dom vol = ℝ