Metamath Proof Explorer


Theorem unielrel

Description: The membership relation for a relation is inherited by class union. (Contributed by NM, 17-Sep-2006)

Ref Expression
Assertion unielrel ( ( Rel 𝑅𝐴𝑅 ) → 𝐴 𝑅 )

Proof

Step Hyp Ref Expression
1 elrel ( ( Rel 𝑅𝐴𝑅 ) → ∃ 𝑥𝑦 𝐴 = ⟨ 𝑥 , 𝑦 ⟩ )
2 simpr ( ( Rel 𝑅𝐴𝑅 ) → 𝐴𝑅 )
3 vex 𝑥 ∈ V
4 vex 𝑦 ∈ V
5 3 4 uniopel ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝑅𝑥 , 𝑦 ⟩ ∈ 𝑅 )
6 5 a1i ( 𝐴 = ⟨ 𝑥 , 𝑦 ⟩ → ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝑅𝑥 , 𝑦 ⟩ ∈ 𝑅 ) )
7 eleq1 ( 𝐴 = ⟨ 𝑥 , 𝑦 ⟩ → ( 𝐴𝑅 ↔ ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝑅 ) )
8 unieq ( 𝐴 = ⟨ 𝑥 , 𝑦 ⟩ → 𝐴 = 𝑥 , 𝑦 ⟩ )
9 8 eleq1d ( 𝐴 = ⟨ 𝑥 , 𝑦 ⟩ → ( 𝐴 𝑅𝑥 , 𝑦 ⟩ ∈ 𝑅 ) )
10 6 7 9 3imtr4d ( 𝐴 = ⟨ 𝑥 , 𝑦 ⟩ → ( 𝐴𝑅 𝐴 𝑅 ) )
11 10 exlimivv ( ∃ 𝑥𝑦 𝐴 = ⟨ 𝑥 , 𝑦 ⟩ → ( 𝐴𝑅 𝐴 𝑅 ) )
12 1 2 11 sylc ( ( Rel 𝑅𝐴𝑅 ) → 𝐴 𝑅 )