Step |
Hyp |
Ref |
Expression |
1 |
|
elxp7 |
⊢ ( 𝐴 ∈ ( 𝐵 × 𝐶 ) ↔ ( 𝐴 ∈ ( V × V ) ∧ ( ( 1st ‘ 𝐴 ) ∈ 𝐵 ∧ ( 2nd ‘ 𝐴 ) ∈ 𝐶 ) ) ) |
2 |
|
elvvuni |
⊢ ( 𝐴 ∈ ( V × V ) → ∪ 𝐴 ∈ 𝐴 ) |
3 |
2
|
adantr |
⊢ ( ( 𝐴 ∈ ( V × V ) ∧ ( ( 1st ‘ 𝐴 ) ∈ 𝐵 ∧ ( 2nd ‘ 𝐴 ) ∈ 𝐶 ) ) → ∪ 𝐴 ∈ 𝐴 ) |
4 |
|
simprl |
⊢ ( ( ∪ 𝐴 ∈ 𝐴 ∧ ( 𝐴 ∈ ( V × V ) ∧ ( ( 1st ‘ 𝐴 ) ∈ 𝐵 ∧ ( 2nd ‘ 𝐴 ) ∈ 𝐶 ) ) ) → 𝐴 ∈ ( V × V ) ) |
5 |
|
eleq2 |
⊢ ( 𝑥 = 𝐴 → ( ∪ 𝐴 ∈ 𝑥 ↔ ∪ 𝐴 ∈ 𝐴 ) ) |
6 |
|
eleq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 ∈ ( V × V ) ↔ 𝐴 ∈ ( V × V ) ) ) |
7 |
|
fveq2 |
⊢ ( 𝑥 = 𝐴 → ( 1st ‘ 𝑥 ) = ( 1st ‘ 𝐴 ) ) |
8 |
7
|
eleq1d |
⊢ ( 𝑥 = 𝐴 → ( ( 1st ‘ 𝑥 ) ∈ 𝐵 ↔ ( 1st ‘ 𝐴 ) ∈ 𝐵 ) ) |
9 |
|
fveq2 |
⊢ ( 𝑥 = 𝐴 → ( 2nd ‘ 𝑥 ) = ( 2nd ‘ 𝐴 ) ) |
10 |
9
|
eleq1d |
⊢ ( 𝑥 = 𝐴 → ( ( 2nd ‘ 𝑥 ) ∈ 𝐶 ↔ ( 2nd ‘ 𝐴 ) ∈ 𝐶 ) ) |
11 |
8 10
|
anbi12d |
⊢ ( 𝑥 = 𝐴 → ( ( ( 1st ‘ 𝑥 ) ∈ 𝐵 ∧ ( 2nd ‘ 𝑥 ) ∈ 𝐶 ) ↔ ( ( 1st ‘ 𝐴 ) ∈ 𝐵 ∧ ( 2nd ‘ 𝐴 ) ∈ 𝐶 ) ) ) |
12 |
6 11
|
anbi12d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 ∈ ( V × V ) ∧ ( ( 1st ‘ 𝑥 ) ∈ 𝐵 ∧ ( 2nd ‘ 𝑥 ) ∈ 𝐶 ) ) ↔ ( 𝐴 ∈ ( V × V ) ∧ ( ( 1st ‘ 𝐴 ) ∈ 𝐵 ∧ ( 2nd ‘ 𝐴 ) ∈ 𝐶 ) ) ) ) |
13 |
5 12
|
anbi12d |
⊢ ( 𝑥 = 𝐴 → ( ( ∪ 𝐴 ∈ 𝑥 ∧ ( 𝑥 ∈ ( V × V ) ∧ ( ( 1st ‘ 𝑥 ) ∈ 𝐵 ∧ ( 2nd ‘ 𝑥 ) ∈ 𝐶 ) ) ) ↔ ( ∪ 𝐴 ∈ 𝐴 ∧ ( 𝐴 ∈ ( V × V ) ∧ ( ( 1st ‘ 𝐴 ) ∈ 𝐵 ∧ ( 2nd ‘ 𝐴 ) ∈ 𝐶 ) ) ) ) ) |
14 |
13
|
spcegv |
⊢ ( 𝐴 ∈ ( V × V ) → ( ( ∪ 𝐴 ∈ 𝐴 ∧ ( 𝐴 ∈ ( V × V ) ∧ ( ( 1st ‘ 𝐴 ) ∈ 𝐵 ∧ ( 2nd ‘ 𝐴 ) ∈ 𝐶 ) ) ) → ∃ 𝑥 ( ∪ 𝐴 ∈ 𝑥 ∧ ( 𝑥 ∈ ( V × V ) ∧ ( ( 1st ‘ 𝑥 ) ∈ 𝐵 ∧ ( 2nd ‘ 𝑥 ) ∈ 𝐶 ) ) ) ) ) |
15 |
4 14
|
mpcom |
⊢ ( ( ∪ 𝐴 ∈ 𝐴 ∧ ( 𝐴 ∈ ( V × V ) ∧ ( ( 1st ‘ 𝐴 ) ∈ 𝐵 ∧ ( 2nd ‘ 𝐴 ) ∈ 𝐶 ) ) ) → ∃ 𝑥 ( ∪ 𝐴 ∈ 𝑥 ∧ ( 𝑥 ∈ ( V × V ) ∧ ( ( 1st ‘ 𝑥 ) ∈ 𝐵 ∧ ( 2nd ‘ 𝑥 ) ∈ 𝐶 ) ) ) ) |
16 |
|
eluniab |
⊢ ( ∪ 𝐴 ∈ ∪ { 𝑥 ∣ ( 𝑥 ∈ ( V × V ) ∧ ( ( 1st ‘ 𝑥 ) ∈ 𝐵 ∧ ( 2nd ‘ 𝑥 ) ∈ 𝐶 ) ) } ↔ ∃ 𝑥 ( ∪ 𝐴 ∈ 𝑥 ∧ ( 𝑥 ∈ ( V × V ) ∧ ( ( 1st ‘ 𝑥 ) ∈ 𝐵 ∧ ( 2nd ‘ 𝑥 ) ∈ 𝐶 ) ) ) ) |
17 |
15 16
|
sylibr |
⊢ ( ( ∪ 𝐴 ∈ 𝐴 ∧ ( 𝐴 ∈ ( V × V ) ∧ ( ( 1st ‘ 𝐴 ) ∈ 𝐵 ∧ ( 2nd ‘ 𝐴 ) ∈ 𝐶 ) ) ) → ∪ 𝐴 ∈ ∪ { 𝑥 ∣ ( 𝑥 ∈ ( V × V ) ∧ ( ( 1st ‘ 𝑥 ) ∈ 𝐵 ∧ ( 2nd ‘ 𝑥 ) ∈ 𝐶 ) ) } ) |
18 |
|
xp2 |
⊢ ( 𝐵 × 𝐶 ) = { 𝑥 ∈ ( V × V ) ∣ ( ( 1st ‘ 𝑥 ) ∈ 𝐵 ∧ ( 2nd ‘ 𝑥 ) ∈ 𝐶 ) } |
19 |
|
df-rab |
⊢ { 𝑥 ∈ ( V × V ) ∣ ( ( 1st ‘ 𝑥 ) ∈ 𝐵 ∧ ( 2nd ‘ 𝑥 ) ∈ 𝐶 ) } = { 𝑥 ∣ ( 𝑥 ∈ ( V × V ) ∧ ( ( 1st ‘ 𝑥 ) ∈ 𝐵 ∧ ( 2nd ‘ 𝑥 ) ∈ 𝐶 ) ) } |
20 |
18 19
|
eqtri |
⊢ ( 𝐵 × 𝐶 ) = { 𝑥 ∣ ( 𝑥 ∈ ( V × V ) ∧ ( ( 1st ‘ 𝑥 ) ∈ 𝐵 ∧ ( 2nd ‘ 𝑥 ) ∈ 𝐶 ) ) } |
21 |
20
|
unieqi |
⊢ ∪ ( 𝐵 × 𝐶 ) = ∪ { 𝑥 ∣ ( 𝑥 ∈ ( V × V ) ∧ ( ( 1st ‘ 𝑥 ) ∈ 𝐵 ∧ ( 2nd ‘ 𝑥 ) ∈ 𝐶 ) ) } |
22 |
17 21
|
eleqtrrdi |
⊢ ( ( ∪ 𝐴 ∈ 𝐴 ∧ ( 𝐴 ∈ ( V × V ) ∧ ( ( 1st ‘ 𝐴 ) ∈ 𝐵 ∧ ( 2nd ‘ 𝐴 ) ∈ 𝐶 ) ) ) → ∪ 𝐴 ∈ ∪ ( 𝐵 × 𝐶 ) ) |
23 |
3 22
|
mpancom |
⊢ ( ( 𝐴 ∈ ( V × V ) ∧ ( ( 1st ‘ 𝐴 ) ∈ 𝐵 ∧ ( 2nd ‘ 𝐴 ) ∈ 𝐶 ) ) → ∪ 𝐴 ∈ ∪ ( 𝐵 × 𝐶 ) ) |
24 |
1 23
|
sylbi |
⊢ ( 𝐴 ∈ ( 𝐵 × 𝐶 ) → ∪ 𝐴 ∈ ∪ ( 𝐵 × 𝐶 ) ) |