Metamath Proof Explorer


Theorem unielxp

Description: The membership relation for a Cartesian product is inherited by union. (Contributed by NM, 16-Sep-2006)

Ref Expression
Assertion unielxp ( 𝐴 ∈ ( 𝐵 × 𝐶 ) → 𝐴 ( 𝐵 × 𝐶 ) )

Proof

Step Hyp Ref Expression
1 elxp7 ( 𝐴 ∈ ( 𝐵 × 𝐶 ) ↔ ( 𝐴 ∈ ( V × V ) ∧ ( ( 1st𝐴 ) ∈ 𝐵 ∧ ( 2nd𝐴 ) ∈ 𝐶 ) ) )
2 elvvuni ( 𝐴 ∈ ( V × V ) → 𝐴𝐴 )
3 2 adantr ( ( 𝐴 ∈ ( V × V ) ∧ ( ( 1st𝐴 ) ∈ 𝐵 ∧ ( 2nd𝐴 ) ∈ 𝐶 ) ) → 𝐴𝐴 )
4 simprl ( ( 𝐴𝐴 ∧ ( 𝐴 ∈ ( V × V ) ∧ ( ( 1st𝐴 ) ∈ 𝐵 ∧ ( 2nd𝐴 ) ∈ 𝐶 ) ) ) → 𝐴 ∈ ( V × V ) )
5 eleq2 ( 𝑥 = 𝐴 → ( 𝐴𝑥 𝐴𝐴 ) )
6 eleq1 ( 𝑥 = 𝐴 → ( 𝑥 ∈ ( V × V ) ↔ 𝐴 ∈ ( V × V ) ) )
7 fveq2 ( 𝑥 = 𝐴 → ( 1st𝑥 ) = ( 1st𝐴 ) )
8 7 eleq1d ( 𝑥 = 𝐴 → ( ( 1st𝑥 ) ∈ 𝐵 ↔ ( 1st𝐴 ) ∈ 𝐵 ) )
9 fveq2 ( 𝑥 = 𝐴 → ( 2nd𝑥 ) = ( 2nd𝐴 ) )
10 9 eleq1d ( 𝑥 = 𝐴 → ( ( 2nd𝑥 ) ∈ 𝐶 ↔ ( 2nd𝐴 ) ∈ 𝐶 ) )
11 8 10 anbi12d ( 𝑥 = 𝐴 → ( ( ( 1st𝑥 ) ∈ 𝐵 ∧ ( 2nd𝑥 ) ∈ 𝐶 ) ↔ ( ( 1st𝐴 ) ∈ 𝐵 ∧ ( 2nd𝐴 ) ∈ 𝐶 ) ) )
12 6 11 anbi12d ( 𝑥 = 𝐴 → ( ( 𝑥 ∈ ( V × V ) ∧ ( ( 1st𝑥 ) ∈ 𝐵 ∧ ( 2nd𝑥 ) ∈ 𝐶 ) ) ↔ ( 𝐴 ∈ ( V × V ) ∧ ( ( 1st𝐴 ) ∈ 𝐵 ∧ ( 2nd𝐴 ) ∈ 𝐶 ) ) ) )
13 5 12 anbi12d ( 𝑥 = 𝐴 → ( ( 𝐴𝑥 ∧ ( 𝑥 ∈ ( V × V ) ∧ ( ( 1st𝑥 ) ∈ 𝐵 ∧ ( 2nd𝑥 ) ∈ 𝐶 ) ) ) ↔ ( 𝐴𝐴 ∧ ( 𝐴 ∈ ( V × V ) ∧ ( ( 1st𝐴 ) ∈ 𝐵 ∧ ( 2nd𝐴 ) ∈ 𝐶 ) ) ) ) )
14 13 spcegv ( 𝐴 ∈ ( V × V ) → ( ( 𝐴𝐴 ∧ ( 𝐴 ∈ ( V × V ) ∧ ( ( 1st𝐴 ) ∈ 𝐵 ∧ ( 2nd𝐴 ) ∈ 𝐶 ) ) ) → ∃ 𝑥 ( 𝐴𝑥 ∧ ( 𝑥 ∈ ( V × V ) ∧ ( ( 1st𝑥 ) ∈ 𝐵 ∧ ( 2nd𝑥 ) ∈ 𝐶 ) ) ) ) )
15 4 14 mpcom ( ( 𝐴𝐴 ∧ ( 𝐴 ∈ ( V × V ) ∧ ( ( 1st𝐴 ) ∈ 𝐵 ∧ ( 2nd𝐴 ) ∈ 𝐶 ) ) ) → ∃ 𝑥 ( 𝐴𝑥 ∧ ( 𝑥 ∈ ( V × V ) ∧ ( ( 1st𝑥 ) ∈ 𝐵 ∧ ( 2nd𝑥 ) ∈ 𝐶 ) ) ) )
16 eluniab ( 𝐴 { 𝑥 ∣ ( 𝑥 ∈ ( V × V ) ∧ ( ( 1st𝑥 ) ∈ 𝐵 ∧ ( 2nd𝑥 ) ∈ 𝐶 ) ) } ↔ ∃ 𝑥 ( 𝐴𝑥 ∧ ( 𝑥 ∈ ( V × V ) ∧ ( ( 1st𝑥 ) ∈ 𝐵 ∧ ( 2nd𝑥 ) ∈ 𝐶 ) ) ) )
17 15 16 sylibr ( ( 𝐴𝐴 ∧ ( 𝐴 ∈ ( V × V ) ∧ ( ( 1st𝐴 ) ∈ 𝐵 ∧ ( 2nd𝐴 ) ∈ 𝐶 ) ) ) → 𝐴 { 𝑥 ∣ ( 𝑥 ∈ ( V × V ) ∧ ( ( 1st𝑥 ) ∈ 𝐵 ∧ ( 2nd𝑥 ) ∈ 𝐶 ) ) } )
18 xp2 ( 𝐵 × 𝐶 ) = { 𝑥 ∈ ( V × V ) ∣ ( ( 1st𝑥 ) ∈ 𝐵 ∧ ( 2nd𝑥 ) ∈ 𝐶 ) }
19 df-rab { 𝑥 ∈ ( V × V ) ∣ ( ( 1st𝑥 ) ∈ 𝐵 ∧ ( 2nd𝑥 ) ∈ 𝐶 ) } = { 𝑥 ∣ ( 𝑥 ∈ ( V × V ) ∧ ( ( 1st𝑥 ) ∈ 𝐵 ∧ ( 2nd𝑥 ) ∈ 𝐶 ) ) }
20 18 19 eqtri ( 𝐵 × 𝐶 ) = { 𝑥 ∣ ( 𝑥 ∈ ( V × V ) ∧ ( ( 1st𝑥 ) ∈ 𝐵 ∧ ( 2nd𝑥 ) ∈ 𝐶 ) ) }
21 20 unieqi ( 𝐵 × 𝐶 ) = { 𝑥 ∣ ( 𝑥 ∈ ( V × V ) ∧ ( ( 1st𝑥 ) ∈ 𝐵 ∧ ( 2nd𝑥 ) ∈ 𝐶 ) ) }
22 17 21 eleqtrrdi ( ( 𝐴𝐴 ∧ ( 𝐴 ∈ ( V × V ) ∧ ( ( 1st𝐴 ) ∈ 𝐵 ∧ ( 2nd𝐴 ) ∈ 𝐶 ) ) ) → 𝐴 ( 𝐵 × 𝐶 ) )
23 3 22 mpancom ( ( 𝐴 ∈ ( V × V ) ∧ ( ( 1st𝐴 ) ∈ 𝐵 ∧ ( 2nd𝐴 ) ∈ 𝐶 ) ) → 𝐴 ( 𝐵 × 𝐶 ) )
24 1 23 sylbi ( 𝐴 ∈ ( 𝐵 × 𝐶 ) → 𝐴 ( 𝐵 × 𝐶 ) )