Metamath Proof Explorer


Theorem uniexd

Description: Deduction version of the ZF Axiom of Union in class notation. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypothesis uniexd.1 ( 𝜑𝐴𝑉 )
Assertion uniexd ( 𝜑 𝐴 ∈ V )

Proof

Step Hyp Ref Expression
1 uniexd.1 ( 𝜑𝐴𝑉 )
2 uniexg ( 𝐴𝑉 𝐴 ∈ V )
3 1 2 syl ( 𝜑 𝐴 ∈ V )