Description: Converse of the Axiom of Union. Note that it does not require ax-un . (Contributed by NM, 11-Nov-2003)
Ref | Expression | ||
---|---|---|---|
Assertion | uniexr | ⊢ ( ∪ 𝐴 ∈ 𝑉 → 𝐴 ∈ V ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwuni | ⊢ 𝐴 ⊆ 𝒫 ∪ 𝐴 | |
2 | pwexg | ⊢ ( ∪ 𝐴 ∈ 𝑉 → 𝒫 ∪ 𝐴 ∈ V ) | |
3 | ssexg | ⊢ ( ( 𝐴 ⊆ 𝒫 ∪ 𝐴 ∧ 𝒫 ∪ 𝐴 ∈ V ) → 𝐴 ∈ V ) | |
4 | 1 2 3 | sylancr | ⊢ ( ∪ 𝐴 ∈ 𝑉 → 𝐴 ∈ V ) |