Description: Converse of the Axiom of Union. Note that it does not require ax-un . (Contributed by NM, 11-Nov-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | uniexr | ⊢ ( ∪ 𝐴 ∈ 𝑉 → 𝐴 ∈ V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwuni | ⊢ 𝐴 ⊆ 𝒫 ∪ 𝐴 | |
| 2 | pwexg | ⊢ ( ∪ 𝐴 ∈ 𝑉 → 𝒫 ∪ 𝐴 ∈ V ) | |
| 3 | ssexg | ⊢ ( ( 𝐴 ⊆ 𝒫 ∪ 𝐴 ∧ 𝒫 ∪ 𝐴 ∈ V ) → 𝐴 ∈ V ) | |
| 4 | 1 2 3 | sylancr | ⊢ ( ∪ 𝐴 ∈ 𝑉 → 𝐴 ∈ V ) |