Metamath Proof Explorer


Theorem uniexr

Description: Converse of the Axiom of Union. Note that it does not require ax-un . (Contributed by NM, 11-Nov-2003)

Ref Expression
Assertion uniexr ( 𝐴𝑉𝐴 ∈ V )

Proof

Step Hyp Ref Expression
1 pwuni 𝐴 ⊆ 𝒫 𝐴
2 pwexg ( 𝐴𝑉 → 𝒫 𝐴 ∈ V )
3 ssexg ( ( 𝐴 ⊆ 𝒫 𝐴 ∧ 𝒫 𝐴 ∈ V ) → 𝐴 ∈ V )
4 1 2 3 sylancr ( 𝐴𝑉𝐴 ∈ V )