Metamath Proof Explorer


Theorem unifi

Description: The finite union of finite sets is finite. Exercise 13 of Enderton p. 144. (Contributed by NM, 22-Aug-2008) (Revised by Mario Carneiro, 31-Aug-2015)

Ref Expression
Assertion unifi ( ( 𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin ) → 𝐴 ∈ Fin )

Proof

Step Hyp Ref Expression
1 dfss3 ( 𝐴 ⊆ Fin ↔ ∀ 𝑥𝐴 𝑥 ∈ Fin )
2 uniiun 𝐴 = 𝑥𝐴 𝑥
3 iunfi ( ( 𝐴 ∈ Fin ∧ ∀ 𝑥𝐴 𝑥 ∈ Fin ) → 𝑥𝐴 𝑥 ∈ Fin )
4 2 3 eqeltrid ( ( 𝐴 ∈ Fin ∧ ∀ 𝑥𝐴 𝑥 ∈ Fin ) → 𝐴 ∈ Fin )
5 1 4 sylan2b ( ( 𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin ) → 𝐴 ∈ Fin )