Description: The finite union of finite sets is finite. Exercise 13 of Enderton p. 144. (Contributed by NM, 22-Aug-2008) (Revised by Mario Carneiro, 31-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | unifi | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin ) → ∪ 𝐴 ∈ Fin ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfss3 | ⊢ ( 𝐴 ⊆ Fin ↔ ∀ 𝑥 ∈ 𝐴 𝑥 ∈ Fin ) | |
2 | uniiun | ⊢ ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 𝑥 | |
3 | iunfi | ⊢ ( ( 𝐴 ∈ Fin ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ∈ Fin ) → ∪ 𝑥 ∈ 𝐴 𝑥 ∈ Fin ) | |
4 | 2 3 | eqeltrid | ⊢ ( ( 𝐴 ∈ Fin ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ∈ Fin ) → ∪ 𝐴 ∈ Fin ) |
5 | 1 4 | sylan2b | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin ) → ∪ 𝐴 ∈ Fin ) |