Metamath Proof Explorer


Theorem unifid

Description: Utility theorem: index-independent form of df-unif . (Contributed by Thierry Arnoux, 17-Dec-2017)

Ref Expression
Assertion unifid UnifSet = Slot ( UnifSet ‘ ndx )

Proof

Step Hyp Ref Expression
1 df-unif UnifSet = Slot 1 3
2 1nn0 1 ∈ ℕ0
3 3nn 3 ∈ ℕ
4 2 3 decnncl 1 3 ∈ ℕ
5 1 4 ndxid UnifSet = Slot ( UnifSet ‘ ndx )