Metamath Proof Explorer
Description: The slot for the uniform set is not the slot for the base set in an
extensible structure. (Contributed by AV, 21-Oct-2024)
|
|
Ref |
Expression |
|
Assertion |
unifndxnbasendx |
⊢ ( UnifSet ‘ ndx ) ≠ ( Base ‘ ndx ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
1re |
⊢ 1 ∈ ℝ |
2 |
|
1nn |
⊢ 1 ∈ ℕ |
3 |
|
3nn0 |
⊢ 3 ∈ ℕ0 |
4 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
5 |
|
1lt10 |
⊢ 1 < ; 1 0 |
6 |
2 3 4 5
|
declti |
⊢ 1 < ; 1 3 |
7 |
1 6
|
gtneii |
⊢ ; 1 3 ≠ 1 |
8 |
|
unifndx |
⊢ ( UnifSet ‘ ndx ) = ; 1 3 |
9 |
|
basendx |
⊢ ( Base ‘ ndx ) = 1 |
10 |
8 9
|
neeq12i |
⊢ ( ( UnifSet ‘ ndx ) ≠ ( Base ‘ ndx ) ↔ ; 1 3 ≠ 1 ) |
11 |
7 10
|
mpbir |
⊢ ( UnifSet ‘ ndx ) ≠ ( Base ‘ ndx ) |