Step |
Hyp |
Ref |
Expression |
1 |
|
uniioombl.1 |
⊢ ( 𝜑 → 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
2 |
|
uniioombl.2 |
⊢ ( 𝜑 → Disj 𝑥 ∈ ℕ ( (,) ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
3 |
|
uniioombl.3 |
⊢ 𝑆 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐹 ) ) |
4 |
1
|
uniiccdif |
⊢ ( 𝜑 → ( ∪ ran ( (,) ∘ 𝐹 ) ⊆ ∪ ran ( [,] ∘ 𝐹 ) ∧ ( vol* ‘ ( ∪ ran ( [,] ∘ 𝐹 ) ∖ ∪ ran ( (,) ∘ 𝐹 ) ) ) = 0 ) ) |
5 |
4
|
simpld |
⊢ ( 𝜑 → ∪ ran ( (,) ∘ 𝐹 ) ⊆ ∪ ran ( [,] ∘ 𝐹 ) ) |
6 |
|
undif |
⊢ ( ∪ ran ( (,) ∘ 𝐹 ) ⊆ ∪ ran ( [,] ∘ 𝐹 ) ↔ ( ∪ ran ( (,) ∘ 𝐹 ) ∪ ( ∪ ran ( [,] ∘ 𝐹 ) ∖ ∪ ran ( (,) ∘ 𝐹 ) ) ) = ∪ ran ( [,] ∘ 𝐹 ) ) |
7 |
5 6
|
sylib |
⊢ ( 𝜑 → ( ∪ ran ( (,) ∘ 𝐹 ) ∪ ( ∪ ran ( [,] ∘ 𝐹 ) ∖ ∪ ran ( (,) ∘ 𝐹 ) ) ) = ∪ ran ( [,] ∘ 𝐹 ) ) |
8 |
1 2 3
|
uniioombl |
⊢ ( 𝜑 → ∪ ran ( (,) ∘ 𝐹 ) ∈ dom vol ) |
9 |
|
ovolficcss |
⊢ ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → ∪ ran ( [,] ∘ 𝐹 ) ⊆ ℝ ) |
10 |
1 9
|
syl |
⊢ ( 𝜑 → ∪ ran ( [,] ∘ 𝐹 ) ⊆ ℝ ) |
11 |
10
|
ssdifssd |
⊢ ( 𝜑 → ( ∪ ran ( [,] ∘ 𝐹 ) ∖ ∪ ran ( (,) ∘ 𝐹 ) ) ⊆ ℝ ) |
12 |
4
|
simprd |
⊢ ( 𝜑 → ( vol* ‘ ( ∪ ran ( [,] ∘ 𝐹 ) ∖ ∪ ran ( (,) ∘ 𝐹 ) ) ) = 0 ) |
13 |
|
nulmbl |
⊢ ( ( ( ∪ ran ( [,] ∘ 𝐹 ) ∖ ∪ ran ( (,) ∘ 𝐹 ) ) ⊆ ℝ ∧ ( vol* ‘ ( ∪ ran ( [,] ∘ 𝐹 ) ∖ ∪ ran ( (,) ∘ 𝐹 ) ) ) = 0 ) → ( ∪ ran ( [,] ∘ 𝐹 ) ∖ ∪ ran ( (,) ∘ 𝐹 ) ) ∈ dom vol ) |
14 |
11 12 13
|
syl2anc |
⊢ ( 𝜑 → ( ∪ ran ( [,] ∘ 𝐹 ) ∖ ∪ ran ( (,) ∘ 𝐹 ) ) ∈ dom vol ) |
15 |
|
unmbl |
⊢ ( ( ∪ ran ( (,) ∘ 𝐹 ) ∈ dom vol ∧ ( ∪ ran ( [,] ∘ 𝐹 ) ∖ ∪ ran ( (,) ∘ 𝐹 ) ) ∈ dom vol ) → ( ∪ ran ( (,) ∘ 𝐹 ) ∪ ( ∪ ran ( [,] ∘ 𝐹 ) ∖ ∪ ran ( (,) ∘ 𝐹 ) ) ) ∈ dom vol ) |
16 |
8 14 15
|
syl2anc |
⊢ ( 𝜑 → ( ∪ ran ( (,) ∘ 𝐹 ) ∪ ( ∪ ran ( [,] ∘ 𝐹 ) ∖ ∪ ran ( (,) ∘ 𝐹 ) ) ) ∈ dom vol ) |
17 |
7 16
|
eqeltrrd |
⊢ ( 𝜑 → ∪ ran ( [,] ∘ 𝐹 ) ∈ dom vol ) |