| Step |
Hyp |
Ref |
Expression |
| 1 |
|
uniimadom.1 |
⊢ 𝐴 ∈ V |
| 2 |
|
uniimadom.2 |
⊢ 𝐵 ∈ V |
| 3 |
1
|
funimaex |
⊢ ( Fun 𝐹 → ( 𝐹 “ 𝐴 ) ∈ V ) |
| 4 |
3
|
adantr |
⊢ ( ( Fun 𝐹 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ≼ 𝐵 ) → ( 𝐹 “ 𝐴 ) ∈ V ) |
| 5 |
|
fvelima |
⊢ ( ( Fun 𝐹 ∧ 𝑦 ∈ ( 𝐹 “ 𝐴 ) ) → ∃ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) = 𝑦 ) |
| 6 |
5
|
ex |
⊢ ( Fun 𝐹 → ( 𝑦 ∈ ( 𝐹 “ 𝐴 ) → ∃ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) = 𝑦 ) ) |
| 7 |
|
breq1 |
⊢ ( ( 𝐹 ‘ 𝑥 ) = 𝑦 → ( ( 𝐹 ‘ 𝑥 ) ≼ 𝐵 ↔ 𝑦 ≼ 𝐵 ) ) |
| 8 |
7
|
biimpd |
⊢ ( ( 𝐹 ‘ 𝑥 ) = 𝑦 → ( ( 𝐹 ‘ 𝑥 ) ≼ 𝐵 → 𝑦 ≼ 𝐵 ) ) |
| 9 |
8
|
reximi |
⊢ ( ∃ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) = 𝑦 → ∃ 𝑥 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) ≼ 𝐵 → 𝑦 ≼ 𝐵 ) ) |
| 10 |
|
r19.36v |
⊢ ( ∃ 𝑥 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) ≼ 𝐵 → 𝑦 ≼ 𝐵 ) → ( ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ≼ 𝐵 → 𝑦 ≼ 𝐵 ) ) |
| 11 |
9 10
|
syl |
⊢ ( ∃ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) = 𝑦 → ( ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ≼ 𝐵 → 𝑦 ≼ 𝐵 ) ) |
| 12 |
6 11
|
syl6 |
⊢ ( Fun 𝐹 → ( 𝑦 ∈ ( 𝐹 “ 𝐴 ) → ( ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ≼ 𝐵 → 𝑦 ≼ 𝐵 ) ) ) |
| 13 |
12
|
com23 |
⊢ ( Fun 𝐹 → ( ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ≼ 𝐵 → ( 𝑦 ∈ ( 𝐹 “ 𝐴 ) → 𝑦 ≼ 𝐵 ) ) ) |
| 14 |
13
|
imp |
⊢ ( ( Fun 𝐹 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ≼ 𝐵 ) → ( 𝑦 ∈ ( 𝐹 “ 𝐴 ) → 𝑦 ≼ 𝐵 ) ) |
| 15 |
14
|
ralrimiv |
⊢ ( ( Fun 𝐹 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ≼ 𝐵 ) → ∀ 𝑦 ∈ ( 𝐹 “ 𝐴 ) 𝑦 ≼ 𝐵 ) |
| 16 |
|
unidom |
⊢ ( ( ( 𝐹 “ 𝐴 ) ∈ V ∧ ∀ 𝑦 ∈ ( 𝐹 “ 𝐴 ) 𝑦 ≼ 𝐵 ) → ∪ ( 𝐹 “ 𝐴 ) ≼ ( ( 𝐹 “ 𝐴 ) × 𝐵 ) ) |
| 17 |
4 15 16
|
syl2anc |
⊢ ( ( Fun 𝐹 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ≼ 𝐵 ) → ∪ ( 𝐹 “ 𝐴 ) ≼ ( ( 𝐹 “ 𝐴 ) × 𝐵 ) ) |
| 18 |
|
imadomg |
⊢ ( 𝐴 ∈ V → ( Fun 𝐹 → ( 𝐹 “ 𝐴 ) ≼ 𝐴 ) ) |
| 19 |
1 18
|
ax-mp |
⊢ ( Fun 𝐹 → ( 𝐹 “ 𝐴 ) ≼ 𝐴 ) |
| 20 |
2
|
xpdom1 |
⊢ ( ( 𝐹 “ 𝐴 ) ≼ 𝐴 → ( ( 𝐹 “ 𝐴 ) × 𝐵 ) ≼ ( 𝐴 × 𝐵 ) ) |
| 21 |
19 20
|
syl |
⊢ ( Fun 𝐹 → ( ( 𝐹 “ 𝐴 ) × 𝐵 ) ≼ ( 𝐴 × 𝐵 ) ) |
| 22 |
21
|
adantr |
⊢ ( ( Fun 𝐹 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ≼ 𝐵 ) → ( ( 𝐹 “ 𝐴 ) × 𝐵 ) ≼ ( 𝐴 × 𝐵 ) ) |
| 23 |
|
domtr |
⊢ ( ( ∪ ( 𝐹 “ 𝐴 ) ≼ ( ( 𝐹 “ 𝐴 ) × 𝐵 ) ∧ ( ( 𝐹 “ 𝐴 ) × 𝐵 ) ≼ ( 𝐴 × 𝐵 ) ) → ∪ ( 𝐹 “ 𝐴 ) ≼ ( 𝐴 × 𝐵 ) ) |
| 24 |
17 22 23
|
syl2anc |
⊢ ( ( Fun 𝐹 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ≼ 𝐵 ) → ∪ ( 𝐹 “ 𝐴 ) ≼ ( 𝐴 × 𝐵 ) ) |