| Step |
Hyp |
Ref |
Expression |
| 1 |
|
uniimadomf.1 |
⊢ Ⅎ 𝑥 𝐹 |
| 2 |
|
uniimadomf.2 |
⊢ 𝐴 ∈ V |
| 3 |
|
uniimadomf.3 |
⊢ 𝐵 ∈ V |
| 4 |
|
nfv |
⊢ Ⅎ 𝑧 ( 𝐹 ‘ 𝑥 ) ≼ 𝐵 |
| 5 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑧 |
| 6 |
1 5
|
nffv |
⊢ Ⅎ 𝑥 ( 𝐹 ‘ 𝑧 ) |
| 7 |
|
nfcv |
⊢ Ⅎ 𝑥 ≼ |
| 8 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐵 |
| 9 |
6 7 8
|
nfbr |
⊢ Ⅎ 𝑥 ( 𝐹 ‘ 𝑧 ) ≼ 𝐵 |
| 10 |
|
fveq2 |
⊢ ( 𝑥 = 𝑧 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑧 ) ) |
| 11 |
10
|
breq1d |
⊢ ( 𝑥 = 𝑧 → ( ( 𝐹 ‘ 𝑥 ) ≼ 𝐵 ↔ ( 𝐹 ‘ 𝑧 ) ≼ 𝐵 ) ) |
| 12 |
4 9 11
|
cbvralw |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ≼ 𝐵 ↔ ∀ 𝑧 ∈ 𝐴 ( 𝐹 ‘ 𝑧 ) ≼ 𝐵 ) |
| 13 |
2 3
|
uniimadom |
⊢ ( ( Fun 𝐹 ∧ ∀ 𝑧 ∈ 𝐴 ( 𝐹 ‘ 𝑧 ) ≼ 𝐵 ) → ∪ ( 𝐹 “ 𝐴 ) ≼ ( 𝐴 × 𝐵 ) ) |
| 14 |
12 13
|
sylan2b |
⊢ ( ( Fun 𝐹 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ≼ 𝐵 ) → ∪ ( 𝐹 “ 𝐴 ) ≼ ( 𝐴 × 𝐵 ) ) |