Metamath Proof Explorer


Theorem uniimadomf

Description: An upper bound for the cardinality of the union of an image. Theorem 10.48 of TakeutiZaring p. 99. This version of uniimadom uses a bound-variable hypothesis in place of a distinct variable condition. (Contributed by NM, 26-Mar-2006)

Ref Expression
Hypotheses uniimadomf.1 𝑥 𝐹
uniimadomf.2 𝐴 ∈ V
uniimadomf.3 𝐵 ∈ V
Assertion uniimadomf ( ( Fun 𝐹 ∧ ∀ 𝑥𝐴 ( 𝐹𝑥 ) ≼ 𝐵 ) → ( 𝐹𝐴 ) ≼ ( 𝐴 × 𝐵 ) )

Proof

Step Hyp Ref Expression
1 uniimadomf.1 𝑥 𝐹
2 uniimadomf.2 𝐴 ∈ V
3 uniimadomf.3 𝐵 ∈ V
4 nfv 𝑧 ( 𝐹𝑥 ) ≼ 𝐵
5 nfcv 𝑥 𝑧
6 1 5 nffv 𝑥 ( 𝐹𝑧 )
7 nfcv 𝑥
8 nfcv 𝑥 𝐵
9 6 7 8 nfbr 𝑥 ( 𝐹𝑧 ) ≼ 𝐵
10 fveq2 ( 𝑥 = 𝑧 → ( 𝐹𝑥 ) = ( 𝐹𝑧 ) )
11 10 breq1d ( 𝑥 = 𝑧 → ( ( 𝐹𝑥 ) ≼ 𝐵 ↔ ( 𝐹𝑧 ) ≼ 𝐵 ) )
12 4 9 11 cbvralw ( ∀ 𝑥𝐴 ( 𝐹𝑥 ) ≼ 𝐵 ↔ ∀ 𝑧𝐴 ( 𝐹𝑧 ) ≼ 𝐵 )
13 2 3 uniimadom ( ( Fun 𝐹 ∧ ∀ 𝑧𝐴 ( 𝐹𝑧 ) ≼ 𝐵 ) → ( 𝐹𝐴 ) ≼ ( 𝐴 × 𝐵 ) )
14 12 13 sylan2b ( ( Fun 𝐹 ∧ ∀ 𝑥𝐴 ( 𝐹𝑥 ) ≼ 𝐵 ) → ( 𝐹𝐴 ) ≼ ( 𝐴 × 𝐵 ) )