Step |
Hyp |
Ref |
Expression |
1 |
|
19.40 |
⊢ ( ∃ 𝑦 ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ) ) → ( ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) ∧ ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ) ) ) |
2 |
|
elin |
⊢ ( 𝑦 ∈ ( 𝐴 ∩ 𝐵 ) ↔ ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) |
3 |
2
|
anbi2i |
⊢ ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ ( 𝐴 ∩ 𝐵 ) ) ↔ ( 𝑥 ∈ 𝑦 ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) ) |
4 |
|
anandi |
⊢ ( ( 𝑥 ∈ 𝑦 ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) ↔ ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ) ) ) |
5 |
3 4
|
bitri |
⊢ ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ ( 𝐴 ∩ 𝐵 ) ) ↔ ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ) ) ) |
6 |
5
|
exbii |
⊢ ( ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ ( 𝐴 ∩ 𝐵 ) ) ↔ ∃ 𝑦 ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ) ) ) |
7 |
|
eluni |
⊢ ( 𝑥 ∈ ∪ 𝐴 ↔ ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) ) |
8 |
|
eluni |
⊢ ( 𝑥 ∈ ∪ 𝐵 ↔ ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ) ) |
9 |
7 8
|
anbi12i |
⊢ ( ( 𝑥 ∈ ∪ 𝐴 ∧ 𝑥 ∈ ∪ 𝐵 ) ↔ ( ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) ∧ ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ) ) ) |
10 |
1 6 9
|
3imtr4i |
⊢ ( ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ ( 𝐴 ∩ 𝐵 ) ) → ( 𝑥 ∈ ∪ 𝐴 ∧ 𝑥 ∈ ∪ 𝐵 ) ) |
11 |
|
eluni |
⊢ ( 𝑥 ∈ ∪ ( 𝐴 ∩ 𝐵 ) ↔ ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ ( 𝐴 ∩ 𝐵 ) ) ) |
12 |
|
elin |
⊢ ( 𝑥 ∈ ( ∪ 𝐴 ∩ ∪ 𝐵 ) ↔ ( 𝑥 ∈ ∪ 𝐴 ∧ 𝑥 ∈ ∪ 𝐵 ) ) |
13 |
10 11 12
|
3imtr4i |
⊢ ( 𝑥 ∈ ∪ ( 𝐴 ∩ 𝐵 ) → 𝑥 ∈ ( ∪ 𝐴 ∩ ∪ 𝐵 ) ) |
14 |
13
|
ssriv |
⊢ ∪ ( 𝐴 ∩ 𝐵 ) ⊆ ( ∪ 𝐴 ∩ ∪ 𝐵 ) |