Metamath Proof Explorer


Theorem uniin

Description: The class union of the intersection of two classes. Exercise 4.12(n) of Mendelson p. 235. See uniinqs for a condition where equality holds. (Contributed by NM, 4-Dec-2003) (Proof shortened by Andrew Salmon, 29-Jun-2011)

Ref Expression
Assertion uniin ( 𝐴𝐵 ) ⊆ ( 𝐴 𝐵 )

Proof

Step Hyp Ref Expression
1 19.40 ( ∃ 𝑦 ( ( 𝑥𝑦𝑦𝐴 ) ∧ ( 𝑥𝑦𝑦𝐵 ) ) → ( ∃ 𝑦 ( 𝑥𝑦𝑦𝐴 ) ∧ ∃ 𝑦 ( 𝑥𝑦𝑦𝐵 ) ) )
2 elin ( 𝑦 ∈ ( 𝐴𝐵 ) ↔ ( 𝑦𝐴𝑦𝐵 ) )
3 2 anbi2i ( ( 𝑥𝑦𝑦 ∈ ( 𝐴𝐵 ) ) ↔ ( 𝑥𝑦 ∧ ( 𝑦𝐴𝑦𝐵 ) ) )
4 anandi ( ( 𝑥𝑦 ∧ ( 𝑦𝐴𝑦𝐵 ) ) ↔ ( ( 𝑥𝑦𝑦𝐴 ) ∧ ( 𝑥𝑦𝑦𝐵 ) ) )
5 3 4 bitri ( ( 𝑥𝑦𝑦 ∈ ( 𝐴𝐵 ) ) ↔ ( ( 𝑥𝑦𝑦𝐴 ) ∧ ( 𝑥𝑦𝑦𝐵 ) ) )
6 5 exbii ( ∃ 𝑦 ( 𝑥𝑦𝑦 ∈ ( 𝐴𝐵 ) ) ↔ ∃ 𝑦 ( ( 𝑥𝑦𝑦𝐴 ) ∧ ( 𝑥𝑦𝑦𝐵 ) ) )
7 eluni ( 𝑥 𝐴 ↔ ∃ 𝑦 ( 𝑥𝑦𝑦𝐴 ) )
8 eluni ( 𝑥 𝐵 ↔ ∃ 𝑦 ( 𝑥𝑦𝑦𝐵 ) )
9 7 8 anbi12i ( ( 𝑥 𝐴𝑥 𝐵 ) ↔ ( ∃ 𝑦 ( 𝑥𝑦𝑦𝐴 ) ∧ ∃ 𝑦 ( 𝑥𝑦𝑦𝐵 ) ) )
10 1 6 9 3imtr4i ( ∃ 𝑦 ( 𝑥𝑦𝑦 ∈ ( 𝐴𝐵 ) ) → ( 𝑥 𝐴𝑥 𝐵 ) )
11 eluni ( 𝑥 ( 𝐴𝐵 ) ↔ ∃ 𝑦 ( 𝑥𝑦𝑦 ∈ ( 𝐴𝐵 ) ) )
12 elin ( 𝑥 ∈ ( 𝐴 𝐵 ) ↔ ( 𝑥 𝐴𝑥 𝐵 ) )
13 10 11 12 3imtr4i ( 𝑥 ( 𝐴𝐵 ) → 𝑥 ∈ ( 𝐴 𝐵 ) )
14 13 ssriv ( 𝐴𝐵 ) ⊆ ( 𝐴 𝐵 )