Metamath Proof Explorer


Theorem uniintab

Description: The union and the intersection of a class abstraction are equal exactly when there is a unique satisfying value of ph ( x ) . (Contributed by Mario Carneiro, 24-Dec-2016)

Ref Expression
Assertion uniintab ( ∃! 𝑥 𝜑 { 𝑥𝜑 } = { 𝑥𝜑 } )

Proof

Step Hyp Ref Expression
1 euabsn2 ( ∃! 𝑥 𝜑 ↔ ∃ 𝑦 { 𝑥𝜑 } = { 𝑦 } )
2 uniintsn ( { 𝑥𝜑 } = { 𝑥𝜑 } ↔ ∃ 𝑦 { 𝑥𝜑 } = { 𝑦 } )
3 1 2 bitr4i ( ∃! 𝑥 𝜑 { 𝑥𝜑 } = { 𝑥𝜑 } )