Metamath Proof Explorer


Theorem uniintsn

Description: Two ways to express " A is a singleton". See also en1 , en1b , card1 , and eusn . (Contributed by NM, 2-Aug-2010)

Ref Expression
Assertion uniintsn ( 𝐴 = 𝐴 ↔ ∃ 𝑥 𝐴 = { 𝑥 } )

Proof

Step Hyp Ref Expression
1 vn0 V ≠ ∅
2 inteq ( 𝐴 = ∅ → 𝐴 = ∅ )
3 int0 ∅ = V
4 2 3 eqtrdi ( 𝐴 = ∅ → 𝐴 = V )
5 4 adantl ( ( 𝐴 = 𝐴𝐴 = ∅ ) → 𝐴 = V )
6 unieq ( 𝐴 = ∅ → 𝐴 = ∅ )
7 uni0 ∅ = ∅
8 6 7 eqtrdi ( 𝐴 = ∅ → 𝐴 = ∅ )
9 eqeq1 ( 𝐴 = 𝐴 → ( 𝐴 = ∅ ↔ 𝐴 = ∅ ) )
10 8 9 syl5ib ( 𝐴 = 𝐴 → ( 𝐴 = ∅ → 𝐴 = ∅ ) )
11 10 imp ( ( 𝐴 = 𝐴𝐴 = ∅ ) → 𝐴 = ∅ )
12 5 11 eqtr3d ( ( 𝐴 = 𝐴𝐴 = ∅ ) → V = ∅ )
13 12 ex ( 𝐴 = 𝐴 → ( 𝐴 = ∅ → V = ∅ ) )
14 13 necon3d ( 𝐴 = 𝐴 → ( V ≠ ∅ → 𝐴 ≠ ∅ ) )
15 1 14 mpi ( 𝐴 = 𝐴𝐴 ≠ ∅ )
16 n0 ( 𝐴 ≠ ∅ ↔ ∃ 𝑥 𝑥𝐴 )
17 15 16 sylib ( 𝐴 = 𝐴 → ∃ 𝑥 𝑥𝐴 )
18 vex 𝑥 ∈ V
19 vex 𝑦 ∈ V
20 18 19 prss ( ( 𝑥𝐴𝑦𝐴 ) ↔ { 𝑥 , 𝑦 } ⊆ 𝐴 )
21 uniss ( { 𝑥 , 𝑦 } ⊆ 𝐴 { 𝑥 , 𝑦 } ⊆ 𝐴 )
22 21 adantl ( ( 𝐴 = 𝐴 ∧ { 𝑥 , 𝑦 } ⊆ 𝐴 ) → { 𝑥 , 𝑦 } ⊆ 𝐴 )
23 simpl ( ( 𝐴 = 𝐴 ∧ { 𝑥 , 𝑦 } ⊆ 𝐴 ) → 𝐴 = 𝐴 )
24 22 23 sseqtrd ( ( 𝐴 = 𝐴 ∧ { 𝑥 , 𝑦 } ⊆ 𝐴 ) → { 𝑥 , 𝑦 } ⊆ 𝐴 )
25 intss ( { 𝑥 , 𝑦 } ⊆ 𝐴 𝐴 { 𝑥 , 𝑦 } )
26 25 adantl ( ( 𝐴 = 𝐴 ∧ { 𝑥 , 𝑦 } ⊆ 𝐴 ) → 𝐴 { 𝑥 , 𝑦 } )
27 24 26 sstrd ( ( 𝐴 = 𝐴 ∧ { 𝑥 , 𝑦 } ⊆ 𝐴 ) → { 𝑥 , 𝑦 } ⊆ { 𝑥 , 𝑦 } )
28 18 19 unipr { 𝑥 , 𝑦 } = ( 𝑥𝑦 )
29 18 19 intpr { 𝑥 , 𝑦 } = ( 𝑥𝑦 )
30 27 28 29 3sstr3g ( ( 𝐴 = 𝐴 ∧ { 𝑥 , 𝑦 } ⊆ 𝐴 ) → ( 𝑥𝑦 ) ⊆ ( 𝑥𝑦 ) )
31 inss1 ( 𝑥𝑦 ) ⊆ 𝑥
32 ssun1 𝑥 ⊆ ( 𝑥𝑦 )
33 31 32 sstri ( 𝑥𝑦 ) ⊆ ( 𝑥𝑦 )
34 eqss ( ( 𝑥𝑦 ) = ( 𝑥𝑦 ) ↔ ( ( 𝑥𝑦 ) ⊆ ( 𝑥𝑦 ) ∧ ( 𝑥𝑦 ) ⊆ ( 𝑥𝑦 ) ) )
35 uneqin ( ( 𝑥𝑦 ) = ( 𝑥𝑦 ) ↔ 𝑥 = 𝑦 )
36 34 35 bitr3i ( ( ( 𝑥𝑦 ) ⊆ ( 𝑥𝑦 ) ∧ ( 𝑥𝑦 ) ⊆ ( 𝑥𝑦 ) ) ↔ 𝑥 = 𝑦 )
37 30 33 36 sylanblc ( ( 𝐴 = 𝐴 ∧ { 𝑥 , 𝑦 } ⊆ 𝐴 ) → 𝑥 = 𝑦 )
38 37 ex ( 𝐴 = 𝐴 → ( { 𝑥 , 𝑦 } ⊆ 𝐴𝑥 = 𝑦 ) )
39 20 38 syl5bi ( 𝐴 = 𝐴 → ( ( 𝑥𝐴𝑦𝐴 ) → 𝑥 = 𝑦 ) )
40 39 alrimivv ( 𝐴 = 𝐴 → ∀ 𝑥𝑦 ( ( 𝑥𝐴𝑦𝐴 ) → 𝑥 = 𝑦 ) )
41 17 40 jca ( 𝐴 = 𝐴 → ( ∃ 𝑥 𝑥𝐴 ∧ ∀ 𝑥𝑦 ( ( 𝑥𝐴𝑦𝐴 ) → 𝑥 = 𝑦 ) ) )
42 euabsn ( ∃! 𝑥 𝑥𝐴 ↔ ∃ 𝑥 { 𝑥𝑥𝐴 } = { 𝑥 } )
43 eleq1w ( 𝑥 = 𝑦 → ( 𝑥𝐴𝑦𝐴 ) )
44 43 eu4 ( ∃! 𝑥 𝑥𝐴 ↔ ( ∃ 𝑥 𝑥𝐴 ∧ ∀ 𝑥𝑦 ( ( 𝑥𝐴𝑦𝐴 ) → 𝑥 = 𝑦 ) ) )
45 abid2 { 𝑥𝑥𝐴 } = 𝐴
46 45 eqeq1i ( { 𝑥𝑥𝐴 } = { 𝑥 } ↔ 𝐴 = { 𝑥 } )
47 46 exbii ( ∃ 𝑥 { 𝑥𝑥𝐴 } = { 𝑥 } ↔ ∃ 𝑥 𝐴 = { 𝑥 } )
48 42 44 47 3bitr3i ( ( ∃ 𝑥 𝑥𝐴 ∧ ∀ 𝑥𝑦 ( ( 𝑥𝐴𝑦𝐴 ) → 𝑥 = 𝑦 ) ) ↔ ∃ 𝑥 𝐴 = { 𝑥 } )
49 41 48 sylib ( 𝐴 = 𝐴 → ∃ 𝑥 𝐴 = { 𝑥 } )
50 18 unisn { 𝑥 } = 𝑥
51 unieq ( 𝐴 = { 𝑥 } → 𝐴 = { 𝑥 } )
52 inteq ( 𝐴 = { 𝑥 } → 𝐴 = { 𝑥 } )
53 18 intsn { 𝑥 } = 𝑥
54 52 53 eqtrdi ( 𝐴 = { 𝑥 } → 𝐴 = 𝑥 )
55 50 51 54 3eqtr4a ( 𝐴 = { 𝑥 } → 𝐴 = 𝐴 )
56 55 exlimiv ( ∃ 𝑥 𝐴 = { 𝑥 } → 𝐴 = 𝐴 )
57 49 56 impbii ( 𝐴 = 𝐴 ↔ ∃ 𝑥 𝐴 = { 𝑥 } )