| Step |
Hyp |
Ref |
Expression |
| 1 |
|
vn0 |
⊢ V ≠ ∅ |
| 2 |
|
inteq |
⊢ ( 𝐴 = ∅ → ∩ 𝐴 = ∩ ∅ ) |
| 3 |
|
int0 |
⊢ ∩ ∅ = V |
| 4 |
2 3
|
eqtrdi |
⊢ ( 𝐴 = ∅ → ∩ 𝐴 = V ) |
| 5 |
4
|
adantl |
⊢ ( ( ∪ 𝐴 = ∩ 𝐴 ∧ 𝐴 = ∅ ) → ∩ 𝐴 = V ) |
| 6 |
|
unieq |
⊢ ( 𝐴 = ∅ → ∪ 𝐴 = ∪ ∅ ) |
| 7 |
|
uni0 |
⊢ ∪ ∅ = ∅ |
| 8 |
6 7
|
eqtrdi |
⊢ ( 𝐴 = ∅ → ∪ 𝐴 = ∅ ) |
| 9 |
|
eqeq1 |
⊢ ( ∪ 𝐴 = ∩ 𝐴 → ( ∪ 𝐴 = ∅ ↔ ∩ 𝐴 = ∅ ) ) |
| 10 |
8 9
|
imbitrid |
⊢ ( ∪ 𝐴 = ∩ 𝐴 → ( 𝐴 = ∅ → ∩ 𝐴 = ∅ ) ) |
| 11 |
10
|
imp |
⊢ ( ( ∪ 𝐴 = ∩ 𝐴 ∧ 𝐴 = ∅ ) → ∩ 𝐴 = ∅ ) |
| 12 |
5 11
|
eqtr3d |
⊢ ( ( ∪ 𝐴 = ∩ 𝐴 ∧ 𝐴 = ∅ ) → V = ∅ ) |
| 13 |
12
|
ex |
⊢ ( ∪ 𝐴 = ∩ 𝐴 → ( 𝐴 = ∅ → V = ∅ ) ) |
| 14 |
13
|
necon3d |
⊢ ( ∪ 𝐴 = ∩ 𝐴 → ( V ≠ ∅ → 𝐴 ≠ ∅ ) ) |
| 15 |
1 14
|
mpi |
⊢ ( ∪ 𝐴 = ∩ 𝐴 → 𝐴 ≠ ∅ ) |
| 16 |
|
n0 |
⊢ ( 𝐴 ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ 𝐴 ) |
| 17 |
15 16
|
sylib |
⊢ ( ∪ 𝐴 = ∩ 𝐴 → ∃ 𝑥 𝑥 ∈ 𝐴 ) |
| 18 |
|
vex |
⊢ 𝑥 ∈ V |
| 19 |
|
vex |
⊢ 𝑦 ∈ V |
| 20 |
18 19
|
prss |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ↔ { 𝑥 , 𝑦 } ⊆ 𝐴 ) |
| 21 |
|
uniss |
⊢ ( { 𝑥 , 𝑦 } ⊆ 𝐴 → ∪ { 𝑥 , 𝑦 } ⊆ ∪ 𝐴 ) |
| 22 |
21
|
adantl |
⊢ ( ( ∪ 𝐴 = ∩ 𝐴 ∧ { 𝑥 , 𝑦 } ⊆ 𝐴 ) → ∪ { 𝑥 , 𝑦 } ⊆ ∪ 𝐴 ) |
| 23 |
|
simpl |
⊢ ( ( ∪ 𝐴 = ∩ 𝐴 ∧ { 𝑥 , 𝑦 } ⊆ 𝐴 ) → ∪ 𝐴 = ∩ 𝐴 ) |
| 24 |
22 23
|
sseqtrd |
⊢ ( ( ∪ 𝐴 = ∩ 𝐴 ∧ { 𝑥 , 𝑦 } ⊆ 𝐴 ) → ∪ { 𝑥 , 𝑦 } ⊆ ∩ 𝐴 ) |
| 25 |
|
intss |
⊢ ( { 𝑥 , 𝑦 } ⊆ 𝐴 → ∩ 𝐴 ⊆ ∩ { 𝑥 , 𝑦 } ) |
| 26 |
25
|
adantl |
⊢ ( ( ∪ 𝐴 = ∩ 𝐴 ∧ { 𝑥 , 𝑦 } ⊆ 𝐴 ) → ∩ 𝐴 ⊆ ∩ { 𝑥 , 𝑦 } ) |
| 27 |
24 26
|
sstrd |
⊢ ( ( ∪ 𝐴 = ∩ 𝐴 ∧ { 𝑥 , 𝑦 } ⊆ 𝐴 ) → ∪ { 𝑥 , 𝑦 } ⊆ ∩ { 𝑥 , 𝑦 } ) |
| 28 |
18 19
|
unipr |
⊢ ∪ { 𝑥 , 𝑦 } = ( 𝑥 ∪ 𝑦 ) |
| 29 |
18 19
|
intpr |
⊢ ∩ { 𝑥 , 𝑦 } = ( 𝑥 ∩ 𝑦 ) |
| 30 |
27 28 29
|
3sstr3g |
⊢ ( ( ∪ 𝐴 = ∩ 𝐴 ∧ { 𝑥 , 𝑦 } ⊆ 𝐴 ) → ( 𝑥 ∪ 𝑦 ) ⊆ ( 𝑥 ∩ 𝑦 ) ) |
| 31 |
|
inss1 |
⊢ ( 𝑥 ∩ 𝑦 ) ⊆ 𝑥 |
| 32 |
|
ssun1 |
⊢ 𝑥 ⊆ ( 𝑥 ∪ 𝑦 ) |
| 33 |
31 32
|
sstri |
⊢ ( 𝑥 ∩ 𝑦 ) ⊆ ( 𝑥 ∪ 𝑦 ) |
| 34 |
|
eqss |
⊢ ( ( 𝑥 ∪ 𝑦 ) = ( 𝑥 ∩ 𝑦 ) ↔ ( ( 𝑥 ∪ 𝑦 ) ⊆ ( 𝑥 ∩ 𝑦 ) ∧ ( 𝑥 ∩ 𝑦 ) ⊆ ( 𝑥 ∪ 𝑦 ) ) ) |
| 35 |
|
uneqin |
⊢ ( ( 𝑥 ∪ 𝑦 ) = ( 𝑥 ∩ 𝑦 ) ↔ 𝑥 = 𝑦 ) |
| 36 |
34 35
|
bitr3i |
⊢ ( ( ( 𝑥 ∪ 𝑦 ) ⊆ ( 𝑥 ∩ 𝑦 ) ∧ ( 𝑥 ∩ 𝑦 ) ⊆ ( 𝑥 ∪ 𝑦 ) ) ↔ 𝑥 = 𝑦 ) |
| 37 |
30 33 36
|
sylanblc |
⊢ ( ( ∪ 𝐴 = ∩ 𝐴 ∧ { 𝑥 , 𝑦 } ⊆ 𝐴 ) → 𝑥 = 𝑦 ) |
| 38 |
37
|
ex |
⊢ ( ∪ 𝐴 = ∩ 𝐴 → ( { 𝑥 , 𝑦 } ⊆ 𝐴 → 𝑥 = 𝑦 ) ) |
| 39 |
20 38
|
biimtrid |
⊢ ( ∪ 𝐴 = ∩ 𝐴 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → 𝑥 = 𝑦 ) ) |
| 40 |
39
|
alrimivv |
⊢ ( ∪ 𝐴 = ∩ 𝐴 → ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → 𝑥 = 𝑦 ) ) |
| 41 |
17 40
|
jca |
⊢ ( ∪ 𝐴 = ∩ 𝐴 → ( ∃ 𝑥 𝑥 ∈ 𝐴 ∧ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → 𝑥 = 𝑦 ) ) ) |
| 42 |
|
euabsn |
⊢ ( ∃! 𝑥 𝑥 ∈ 𝐴 ↔ ∃ 𝑥 { 𝑥 ∣ 𝑥 ∈ 𝐴 } = { 𝑥 } ) |
| 43 |
|
eleq1w |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴 ) ) |
| 44 |
43
|
eu4 |
⊢ ( ∃! 𝑥 𝑥 ∈ 𝐴 ↔ ( ∃ 𝑥 𝑥 ∈ 𝐴 ∧ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → 𝑥 = 𝑦 ) ) ) |
| 45 |
|
abid2 |
⊢ { 𝑥 ∣ 𝑥 ∈ 𝐴 } = 𝐴 |
| 46 |
45
|
eqeq1i |
⊢ ( { 𝑥 ∣ 𝑥 ∈ 𝐴 } = { 𝑥 } ↔ 𝐴 = { 𝑥 } ) |
| 47 |
46
|
exbii |
⊢ ( ∃ 𝑥 { 𝑥 ∣ 𝑥 ∈ 𝐴 } = { 𝑥 } ↔ ∃ 𝑥 𝐴 = { 𝑥 } ) |
| 48 |
42 44 47
|
3bitr3i |
⊢ ( ( ∃ 𝑥 𝑥 ∈ 𝐴 ∧ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → 𝑥 = 𝑦 ) ) ↔ ∃ 𝑥 𝐴 = { 𝑥 } ) |
| 49 |
41 48
|
sylib |
⊢ ( ∪ 𝐴 = ∩ 𝐴 → ∃ 𝑥 𝐴 = { 𝑥 } ) |
| 50 |
|
unisnv |
⊢ ∪ { 𝑥 } = 𝑥 |
| 51 |
|
unieq |
⊢ ( 𝐴 = { 𝑥 } → ∪ 𝐴 = ∪ { 𝑥 } ) |
| 52 |
|
inteq |
⊢ ( 𝐴 = { 𝑥 } → ∩ 𝐴 = ∩ { 𝑥 } ) |
| 53 |
18
|
intsn |
⊢ ∩ { 𝑥 } = 𝑥 |
| 54 |
52 53
|
eqtrdi |
⊢ ( 𝐴 = { 𝑥 } → ∩ 𝐴 = 𝑥 ) |
| 55 |
50 51 54
|
3eqtr4a |
⊢ ( 𝐴 = { 𝑥 } → ∪ 𝐴 = ∩ 𝐴 ) |
| 56 |
55
|
exlimiv |
⊢ ( ∃ 𝑥 𝐴 = { 𝑥 } → ∪ 𝐴 = ∩ 𝐴 ) |
| 57 |
49 56
|
impbii |
⊢ ( ∪ 𝐴 = ∩ 𝐴 ↔ ∃ 𝑥 𝐴 = { 𝑥 } ) |