| Step | Hyp | Ref | Expression | 
						
							| 1 |  | uniioombl.1 | ⊢ ( 𝜑  →  𝐹 : ℕ ⟶ (  ≤   ∩  ( ℝ  ×  ℝ ) ) ) | 
						
							| 2 |  | uniioombl.2 | ⊢ ( 𝜑  →  Disj  𝑥  ∈  ℕ ( (,) ‘ ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 3 |  | uniioombl.3 | ⊢ 𝑆  =  seq 1 (  +  ,  ( ( abs  ∘   −  )  ∘  𝐹 ) ) | 
						
							| 4 |  | ioof | ⊢ (,) : ( ℝ*  ×  ℝ* ) ⟶ 𝒫  ℝ | 
						
							| 5 |  | inss2 | ⊢ (  ≤   ∩  ( ℝ  ×  ℝ ) )  ⊆  ( ℝ  ×  ℝ ) | 
						
							| 6 |  | rexpssxrxp | ⊢ ( ℝ  ×  ℝ )  ⊆  ( ℝ*  ×  ℝ* ) | 
						
							| 7 | 5 6 | sstri | ⊢ (  ≤   ∩  ( ℝ  ×  ℝ ) )  ⊆  ( ℝ*  ×  ℝ* ) | 
						
							| 8 |  | fss | ⊢ ( ( 𝐹 : ℕ ⟶ (  ≤   ∩  ( ℝ  ×  ℝ ) )  ∧  (  ≤   ∩  ( ℝ  ×  ℝ ) )  ⊆  ( ℝ*  ×  ℝ* ) )  →  𝐹 : ℕ ⟶ ( ℝ*  ×  ℝ* ) ) | 
						
							| 9 | 1 7 8 | sylancl | ⊢ ( 𝜑  →  𝐹 : ℕ ⟶ ( ℝ*  ×  ℝ* ) ) | 
						
							| 10 |  | fco | ⊢ ( ( (,) : ( ℝ*  ×  ℝ* ) ⟶ 𝒫  ℝ  ∧  𝐹 : ℕ ⟶ ( ℝ*  ×  ℝ* ) )  →  ( (,)  ∘  𝐹 ) : ℕ ⟶ 𝒫  ℝ ) | 
						
							| 11 | 4 9 10 | sylancr | ⊢ ( 𝜑  →  ( (,)  ∘  𝐹 ) : ℕ ⟶ 𝒫  ℝ ) | 
						
							| 12 | 11 | frnd | ⊢ ( 𝜑  →  ran  ( (,)  ∘  𝐹 )  ⊆  𝒫  ℝ ) | 
						
							| 13 |  | sspwuni | ⊢ ( ran  ( (,)  ∘  𝐹 )  ⊆  𝒫  ℝ  ↔  ∪  ran  ( (,)  ∘  𝐹 )  ⊆  ℝ ) | 
						
							| 14 | 12 13 | sylib | ⊢ ( 𝜑  →  ∪  ran  ( (,)  ∘  𝐹 )  ⊆  ℝ ) | 
						
							| 15 |  | elpwi | ⊢ ( 𝑧  ∈  𝒫  ℝ  →  𝑧  ⊆  ℝ ) | 
						
							| 16 | 15 | ad2antrl | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  𝒫  ℝ  ∧  ( vol* ‘ 𝑧 )  ∈  ℝ ) )  →  𝑧  ⊆  ℝ ) | 
						
							| 17 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  𝒫  ℝ  ∧  ( vol* ‘ 𝑧 )  ∈  ℝ ) )  →  ( vol* ‘ 𝑧 )  ∈  ℝ ) | 
						
							| 18 |  | rphalfcl | ⊢ ( 𝑟  ∈  ℝ+  →  ( 𝑟  /  2 )  ∈  ℝ+ ) | 
						
							| 19 | 18 | rphalfcld | ⊢ ( 𝑟  ∈  ℝ+  →  ( ( 𝑟  /  2 )  /  2 )  ∈  ℝ+ ) | 
						
							| 20 |  | eqid | ⊢ seq 1 (  +  ,  ( ( abs  ∘   −  )  ∘  𝑓 ) )  =  seq 1 (  +  ,  ( ( abs  ∘   −  )  ∘  𝑓 ) ) | 
						
							| 21 | 20 | ovolgelb | ⊢ ( ( 𝑧  ⊆  ℝ  ∧  ( vol* ‘ 𝑧 )  ∈  ℝ  ∧  ( ( 𝑟  /  2 )  /  2 )  ∈  ℝ+ )  →  ∃ 𝑓  ∈  ( (  ≤   ∩  ( ℝ  ×  ℝ ) )  ↑m  ℕ ) ( 𝑧  ⊆  ∪  ran  ( (,)  ∘  𝑓 )  ∧  sup ( ran  seq 1 (  +  ,  ( ( abs  ∘   −  )  ∘  𝑓 ) ) ,  ℝ* ,   <  )  ≤  ( ( vol* ‘ 𝑧 )  +  ( ( 𝑟  /  2 )  /  2 ) ) ) ) | 
						
							| 22 | 16 17 19 21 | syl2an3an | ⊢ ( ( ( 𝜑  ∧  ( 𝑧  ∈  𝒫  ℝ  ∧  ( vol* ‘ 𝑧 )  ∈  ℝ ) )  ∧  𝑟  ∈  ℝ+ )  →  ∃ 𝑓  ∈  ( (  ≤   ∩  ( ℝ  ×  ℝ ) )  ↑m  ℕ ) ( 𝑧  ⊆  ∪  ran  ( (,)  ∘  𝑓 )  ∧  sup ( ran  seq 1 (  +  ,  ( ( abs  ∘   −  )  ∘  𝑓 ) ) ,  ℝ* ,   <  )  ≤  ( ( vol* ‘ 𝑧 )  +  ( ( 𝑟  /  2 )  /  2 ) ) ) ) | 
						
							| 23 | 1 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑧  ∈  𝒫  ℝ  ∧  ( vol* ‘ 𝑧 )  ∈  ℝ ) )  ∧  𝑟  ∈  ℝ+ )  ∧  ( 𝑓  ∈  ( (  ≤   ∩  ( ℝ  ×  ℝ ) )  ↑m  ℕ )  ∧  ( 𝑧  ⊆  ∪  ran  ( (,)  ∘  𝑓 )  ∧  sup ( ran  seq 1 (  +  ,  ( ( abs  ∘   −  )  ∘  𝑓 ) ) ,  ℝ* ,   <  )  ≤  ( ( vol* ‘ 𝑧 )  +  ( ( 𝑟  /  2 )  /  2 ) ) ) ) )  →  𝐹 : ℕ ⟶ (  ≤   ∩  ( ℝ  ×  ℝ ) ) ) | 
						
							| 24 | 2 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑧  ∈  𝒫  ℝ  ∧  ( vol* ‘ 𝑧 )  ∈  ℝ ) )  ∧  𝑟  ∈  ℝ+ )  ∧  ( 𝑓  ∈  ( (  ≤   ∩  ( ℝ  ×  ℝ ) )  ↑m  ℕ )  ∧  ( 𝑧  ⊆  ∪  ran  ( (,)  ∘  𝑓 )  ∧  sup ( ran  seq 1 (  +  ,  ( ( abs  ∘   −  )  ∘  𝑓 ) ) ,  ℝ* ,   <  )  ≤  ( ( vol* ‘ 𝑧 )  +  ( ( 𝑟  /  2 )  /  2 ) ) ) ) )  →  Disj  𝑥  ∈  ℕ ( (,) ‘ ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 25 |  | eqid | ⊢ ∪  ran  ( (,)  ∘  𝐹 )  =  ∪  ran  ( (,)  ∘  𝐹 ) | 
						
							| 26 | 17 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑧  ∈  𝒫  ℝ  ∧  ( vol* ‘ 𝑧 )  ∈  ℝ ) )  ∧  𝑟  ∈  ℝ+ )  →  ( vol* ‘ 𝑧 )  ∈  ℝ ) | 
						
							| 27 | 26 | adantr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑧  ∈  𝒫  ℝ  ∧  ( vol* ‘ 𝑧 )  ∈  ℝ ) )  ∧  𝑟  ∈  ℝ+ )  ∧  ( 𝑓  ∈  ( (  ≤   ∩  ( ℝ  ×  ℝ ) )  ↑m  ℕ )  ∧  ( 𝑧  ⊆  ∪  ran  ( (,)  ∘  𝑓 )  ∧  sup ( ran  seq 1 (  +  ,  ( ( abs  ∘   −  )  ∘  𝑓 ) ) ,  ℝ* ,   <  )  ≤  ( ( vol* ‘ 𝑧 )  +  ( ( 𝑟  /  2 )  /  2 ) ) ) ) )  →  ( vol* ‘ 𝑧 )  ∈  ℝ ) | 
						
							| 28 | 18 | adantl | ⊢ ( ( ( 𝜑  ∧  ( 𝑧  ∈  𝒫  ℝ  ∧  ( vol* ‘ 𝑧 )  ∈  ℝ ) )  ∧  𝑟  ∈  ℝ+ )  →  ( 𝑟  /  2 )  ∈  ℝ+ ) | 
						
							| 29 | 28 | adantr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑧  ∈  𝒫  ℝ  ∧  ( vol* ‘ 𝑧 )  ∈  ℝ ) )  ∧  𝑟  ∈  ℝ+ )  ∧  ( 𝑓  ∈  ( (  ≤   ∩  ( ℝ  ×  ℝ ) )  ↑m  ℕ )  ∧  ( 𝑧  ⊆  ∪  ran  ( (,)  ∘  𝑓 )  ∧  sup ( ran  seq 1 (  +  ,  ( ( abs  ∘   −  )  ∘  𝑓 ) ) ,  ℝ* ,   <  )  ≤  ( ( vol* ‘ 𝑧 )  +  ( ( 𝑟  /  2 )  /  2 ) ) ) ) )  →  ( 𝑟  /  2 )  ∈  ℝ+ ) | 
						
							| 30 | 29 | rphalfcld | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑧  ∈  𝒫  ℝ  ∧  ( vol* ‘ 𝑧 )  ∈  ℝ ) )  ∧  𝑟  ∈  ℝ+ )  ∧  ( 𝑓  ∈  ( (  ≤   ∩  ( ℝ  ×  ℝ ) )  ↑m  ℕ )  ∧  ( 𝑧  ⊆  ∪  ran  ( (,)  ∘  𝑓 )  ∧  sup ( ran  seq 1 (  +  ,  ( ( abs  ∘   −  )  ∘  𝑓 ) ) ,  ℝ* ,   <  )  ≤  ( ( vol* ‘ 𝑧 )  +  ( ( 𝑟  /  2 )  /  2 ) ) ) ) )  →  ( ( 𝑟  /  2 )  /  2 )  ∈  ℝ+ ) | 
						
							| 31 |  | elmapi | ⊢ ( 𝑓  ∈  ( (  ≤   ∩  ( ℝ  ×  ℝ ) )  ↑m  ℕ )  →  𝑓 : ℕ ⟶ (  ≤   ∩  ( ℝ  ×  ℝ ) ) ) | 
						
							| 32 | 31 | ad2antrl | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑧  ∈  𝒫  ℝ  ∧  ( vol* ‘ 𝑧 )  ∈  ℝ ) )  ∧  𝑟  ∈  ℝ+ )  ∧  ( 𝑓  ∈  ( (  ≤   ∩  ( ℝ  ×  ℝ ) )  ↑m  ℕ )  ∧  ( 𝑧  ⊆  ∪  ran  ( (,)  ∘  𝑓 )  ∧  sup ( ran  seq 1 (  +  ,  ( ( abs  ∘   −  )  ∘  𝑓 ) ) ,  ℝ* ,   <  )  ≤  ( ( vol* ‘ 𝑧 )  +  ( ( 𝑟  /  2 )  /  2 ) ) ) ) )  →  𝑓 : ℕ ⟶ (  ≤   ∩  ( ℝ  ×  ℝ ) ) ) | 
						
							| 33 |  | simprrl | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑧  ∈  𝒫  ℝ  ∧  ( vol* ‘ 𝑧 )  ∈  ℝ ) )  ∧  𝑟  ∈  ℝ+ )  ∧  ( 𝑓  ∈  ( (  ≤   ∩  ( ℝ  ×  ℝ ) )  ↑m  ℕ )  ∧  ( 𝑧  ⊆  ∪  ran  ( (,)  ∘  𝑓 )  ∧  sup ( ran  seq 1 (  +  ,  ( ( abs  ∘   −  )  ∘  𝑓 ) ) ,  ℝ* ,   <  )  ≤  ( ( vol* ‘ 𝑧 )  +  ( ( 𝑟  /  2 )  /  2 ) ) ) ) )  →  𝑧  ⊆  ∪  ran  ( (,)  ∘  𝑓 ) ) | 
						
							| 34 |  | simprrr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑧  ∈  𝒫  ℝ  ∧  ( vol* ‘ 𝑧 )  ∈  ℝ ) )  ∧  𝑟  ∈  ℝ+ )  ∧  ( 𝑓  ∈  ( (  ≤   ∩  ( ℝ  ×  ℝ ) )  ↑m  ℕ )  ∧  ( 𝑧  ⊆  ∪  ran  ( (,)  ∘  𝑓 )  ∧  sup ( ran  seq 1 (  +  ,  ( ( abs  ∘   −  )  ∘  𝑓 ) ) ,  ℝ* ,   <  )  ≤  ( ( vol* ‘ 𝑧 )  +  ( ( 𝑟  /  2 )  /  2 ) ) ) ) )  →  sup ( ran  seq 1 (  +  ,  ( ( abs  ∘   −  )  ∘  𝑓 ) ) ,  ℝ* ,   <  )  ≤  ( ( vol* ‘ 𝑧 )  +  ( ( 𝑟  /  2 )  /  2 ) ) ) | 
						
							| 35 | 23 24 3 25 27 30 32 33 20 34 | uniioombllem6 | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑧  ∈  𝒫  ℝ  ∧  ( vol* ‘ 𝑧 )  ∈  ℝ ) )  ∧  𝑟  ∈  ℝ+ )  ∧  ( 𝑓  ∈  ( (  ≤   ∩  ( ℝ  ×  ℝ ) )  ↑m  ℕ )  ∧  ( 𝑧  ⊆  ∪  ran  ( (,)  ∘  𝑓 )  ∧  sup ( ran  seq 1 (  +  ,  ( ( abs  ∘   −  )  ∘  𝑓 ) ) ,  ℝ* ,   <  )  ≤  ( ( vol* ‘ 𝑧 )  +  ( ( 𝑟  /  2 )  /  2 ) ) ) ) )  →  ( ( vol* ‘ ( 𝑧  ∩  ∪  ran  ( (,)  ∘  𝐹 ) ) )  +  ( vol* ‘ ( 𝑧  ∖  ∪  ran  ( (,)  ∘  𝐹 ) ) ) )  ≤  ( ( vol* ‘ 𝑧 )  +  ( 4  ·  ( ( 𝑟  /  2 )  /  2 ) ) ) ) | 
						
							| 36 | 22 35 | rexlimddv | ⊢ ( ( ( 𝜑  ∧  ( 𝑧  ∈  𝒫  ℝ  ∧  ( vol* ‘ 𝑧 )  ∈  ℝ ) )  ∧  𝑟  ∈  ℝ+ )  →  ( ( vol* ‘ ( 𝑧  ∩  ∪  ran  ( (,)  ∘  𝐹 ) ) )  +  ( vol* ‘ ( 𝑧  ∖  ∪  ran  ( (,)  ∘  𝐹 ) ) ) )  ≤  ( ( vol* ‘ 𝑧 )  +  ( 4  ·  ( ( 𝑟  /  2 )  /  2 ) ) ) ) | 
						
							| 37 |  | rpcn | ⊢ ( 𝑟  ∈  ℝ+  →  𝑟  ∈  ℂ ) | 
						
							| 38 | 37 | adantl | ⊢ ( ( ( 𝜑  ∧  ( 𝑧  ∈  𝒫  ℝ  ∧  ( vol* ‘ 𝑧 )  ∈  ℝ ) )  ∧  𝑟  ∈  ℝ+ )  →  𝑟  ∈  ℂ ) | 
						
							| 39 |  | 2cnd | ⊢ ( ( ( 𝜑  ∧  ( 𝑧  ∈  𝒫  ℝ  ∧  ( vol* ‘ 𝑧 )  ∈  ℝ ) )  ∧  𝑟  ∈  ℝ+ )  →  2  ∈  ℂ ) | 
						
							| 40 |  | 2ne0 | ⊢ 2  ≠  0 | 
						
							| 41 | 40 | a1i | ⊢ ( ( ( 𝜑  ∧  ( 𝑧  ∈  𝒫  ℝ  ∧  ( vol* ‘ 𝑧 )  ∈  ℝ ) )  ∧  𝑟  ∈  ℝ+ )  →  2  ≠  0 ) | 
						
							| 42 | 38 39 39 41 41 | divdiv1d | ⊢ ( ( ( 𝜑  ∧  ( 𝑧  ∈  𝒫  ℝ  ∧  ( vol* ‘ 𝑧 )  ∈  ℝ ) )  ∧  𝑟  ∈  ℝ+ )  →  ( ( 𝑟  /  2 )  /  2 )  =  ( 𝑟  /  ( 2  ·  2 ) ) ) | 
						
							| 43 |  | 2t2e4 | ⊢ ( 2  ·  2 )  =  4 | 
						
							| 44 | 43 | oveq2i | ⊢ ( 𝑟  /  ( 2  ·  2 ) )  =  ( 𝑟  /  4 ) | 
						
							| 45 | 42 44 | eqtrdi | ⊢ ( ( ( 𝜑  ∧  ( 𝑧  ∈  𝒫  ℝ  ∧  ( vol* ‘ 𝑧 )  ∈  ℝ ) )  ∧  𝑟  ∈  ℝ+ )  →  ( ( 𝑟  /  2 )  /  2 )  =  ( 𝑟  /  4 ) ) | 
						
							| 46 | 45 | oveq2d | ⊢ ( ( ( 𝜑  ∧  ( 𝑧  ∈  𝒫  ℝ  ∧  ( vol* ‘ 𝑧 )  ∈  ℝ ) )  ∧  𝑟  ∈  ℝ+ )  →  ( 4  ·  ( ( 𝑟  /  2 )  /  2 ) )  =  ( 4  ·  ( 𝑟  /  4 ) ) ) | 
						
							| 47 |  | 4cn | ⊢ 4  ∈  ℂ | 
						
							| 48 | 47 | a1i | ⊢ ( ( ( 𝜑  ∧  ( 𝑧  ∈  𝒫  ℝ  ∧  ( vol* ‘ 𝑧 )  ∈  ℝ ) )  ∧  𝑟  ∈  ℝ+ )  →  4  ∈  ℂ ) | 
						
							| 49 |  | 4ne0 | ⊢ 4  ≠  0 | 
						
							| 50 | 49 | a1i | ⊢ ( ( ( 𝜑  ∧  ( 𝑧  ∈  𝒫  ℝ  ∧  ( vol* ‘ 𝑧 )  ∈  ℝ ) )  ∧  𝑟  ∈  ℝ+ )  →  4  ≠  0 ) | 
						
							| 51 | 38 48 50 | divcan2d | ⊢ ( ( ( 𝜑  ∧  ( 𝑧  ∈  𝒫  ℝ  ∧  ( vol* ‘ 𝑧 )  ∈  ℝ ) )  ∧  𝑟  ∈  ℝ+ )  →  ( 4  ·  ( 𝑟  /  4 ) )  =  𝑟 ) | 
						
							| 52 | 46 51 | eqtrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑧  ∈  𝒫  ℝ  ∧  ( vol* ‘ 𝑧 )  ∈  ℝ ) )  ∧  𝑟  ∈  ℝ+ )  →  ( 4  ·  ( ( 𝑟  /  2 )  /  2 ) )  =  𝑟 ) | 
						
							| 53 | 52 | oveq2d | ⊢ ( ( ( 𝜑  ∧  ( 𝑧  ∈  𝒫  ℝ  ∧  ( vol* ‘ 𝑧 )  ∈  ℝ ) )  ∧  𝑟  ∈  ℝ+ )  →  ( ( vol* ‘ 𝑧 )  +  ( 4  ·  ( ( 𝑟  /  2 )  /  2 ) ) )  =  ( ( vol* ‘ 𝑧 )  +  𝑟 ) ) | 
						
							| 54 | 36 53 | breqtrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑧  ∈  𝒫  ℝ  ∧  ( vol* ‘ 𝑧 )  ∈  ℝ ) )  ∧  𝑟  ∈  ℝ+ )  →  ( ( vol* ‘ ( 𝑧  ∩  ∪  ran  ( (,)  ∘  𝐹 ) ) )  +  ( vol* ‘ ( 𝑧  ∖  ∪  ran  ( (,)  ∘  𝐹 ) ) ) )  ≤  ( ( vol* ‘ 𝑧 )  +  𝑟 ) ) | 
						
							| 55 | 54 | ralrimiva | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  𝒫  ℝ  ∧  ( vol* ‘ 𝑧 )  ∈  ℝ ) )  →  ∀ 𝑟  ∈  ℝ+ ( ( vol* ‘ ( 𝑧  ∩  ∪  ran  ( (,)  ∘  𝐹 ) ) )  +  ( vol* ‘ ( 𝑧  ∖  ∪  ran  ( (,)  ∘  𝐹 ) ) ) )  ≤  ( ( vol* ‘ 𝑧 )  +  𝑟 ) ) | 
						
							| 56 |  | inss1 | ⊢ ( 𝑧  ∩  ∪  ran  ( (,)  ∘  𝐹 ) )  ⊆  𝑧 | 
						
							| 57 | 56 | a1i | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  𝒫  ℝ  ∧  ( vol* ‘ 𝑧 )  ∈  ℝ ) )  →  ( 𝑧  ∩  ∪  ran  ( (,)  ∘  𝐹 ) )  ⊆  𝑧 ) | 
						
							| 58 |  | ovolsscl | ⊢ ( ( ( 𝑧  ∩  ∪  ran  ( (,)  ∘  𝐹 ) )  ⊆  𝑧  ∧  𝑧  ⊆  ℝ  ∧  ( vol* ‘ 𝑧 )  ∈  ℝ )  →  ( vol* ‘ ( 𝑧  ∩  ∪  ran  ( (,)  ∘  𝐹 ) ) )  ∈  ℝ ) | 
						
							| 59 | 57 16 17 58 | syl3anc | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  𝒫  ℝ  ∧  ( vol* ‘ 𝑧 )  ∈  ℝ ) )  →  ( vol* ‘ ( 𝑧  ∩  ∪  ran  ( (,)  ∘  𝐹 ) ) )  ∈  ℝ ) | 
						
							| 60 |  | difssd | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  𝒫  ℝ  ∧  ( vol* ‘ 𝑧 )  ∈  ℝ ) )  →  ( 𝑧  ∖  ∪  ran  ( (,)  ∘  𝐹 ) )  ⊆  𝑧 ) | 
						
							| 61 |  | ovolsscl | ⊢ ( ( ( 𝑧  ∖  ∪  ran  ( (,)  ∘  𝐹 ) )  ⊆  𝑧  ∧  𝑧  ⊆  ℝ  ∧  ( vol* ‘ 𝑧 )  ∈  ℝ )  →  ( vol* ‘ ( 𝑧  ∖  ∪  ran  ( (,)  ∘  𝐹 ) ) )  ∈  ℝ ) | 
						
							| 62 | 60 16 17 61 | syl3anc | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  𝒫  ℝ  ∧  ( vol* ‘ 𝑧 )  ∈  ℝ ) )  →  ( vol* ‘ ( 𝑧  ∖  ∪  ran  ( (,)  ∘  𝐹 ) ) )  ∈  ℝ ) | 
						
							| 63 | 59 62 | readdcld | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  𝒫  ℝ  ∧  ( vol* ‘ 𝑧 )  ∈  ℝ ) )  →  ( ( vol* ‘ ( 𝑧  ∩  ∪  ran  ( (,)  ∘  𝐹 ) ) )  +  ( vol* ‘ ( 𝑧  ∖  ∪  ran  ( (,)  ∘  𝐹 ) ) ) )  ∈  ℝ ) | 
						
							| 64 |  | alrple | ⊢ ( ( ( ( vol* ‘ ( 𝑧  ∩  ∪  ran  ( (,)  ∘  𝐹 ) ) )  +  ( vol* ‘ ( 𝑧  ∖  ∪  ran  ( (,)  ∘  𝐹 ) ) ) )  ∈  ℝ  ∧  ( vol* ‘ 𝑧 )  ∈  ℝ )  →  ( ( ( vol* ‘ ( 𝑧  ∩  ∪  ran  ( (,)  ∘  𝐹 ) ) )  +  ( vol* ‘ ( 𝑧  ∖  ∪  ran  ( (,)  ∘  𝐹 ) ) ) )  ≤  ( vol* ‘ 𝑧 )  ↔  ∀ 𝑟  ∈  ℝ+ ( ( vol* ‘ ( 𝑧  ∩  ∪  ran  ( (,)  ∘  𝐹 ) ) )  +  ( vol* ‘ ( 𝑧  ∖  ∪  ran  ( (,)  ∘  𝐹 ) ) ) )  ≤  ( ( vol* ‘ 𝑧 )  +  𝑟 ) ) ) | 
						
							| 65 | 63 17 64 | syl2anc | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  𝒫  ℝ  ∧  ( vol* ‘ 𝑧 )  ∈  ℝ ) )  →  ( ( ( vol* ‘ ( 𝑧  ∩  ∪  ran  ( (,)  ∘  𝐹 ) ) )  +  ( vol* ‘ ( 𝑧  ∖  ∪  ran  ( (,)  ∘  𝐹 ) ) ) )  ≤  ( vol* ‘ 𝑧 )  ↔  ∀ 𝑟  ∈  ℝ+ ( ( vol* ‘ ( 𝑧  ∩  ∪  ran  ( (,)  ∘  𝐹 ) ) )  +  ( vol* ‘ ( 𝑧  ∖  ∪  ran  ( (,)  ∘  𝐹 ) ) ) )  ≤  ( ( vol* ‘ 𝑧 )  +  𝑟 ) ) ) | 
						
							| 66 | 55 65 | mpbird | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  𝒫  ℝ  ∧  ( vol* ‘ 𝑧 )  ∈  ℝ ) )  →  ( ( vol* ‘ ( 𝑧  ∩  ∪  ran  ( (,)  ∘  𝐹 ) ) )  +  ( vol* ‘ ( 𝑧  ∖  ∪  ran  ( (,)  ∘  𝐹 ) ) ) )  ≤  ( vol* ‘ 𝑧 ) ) | 
						
							| 67 | 66 | expr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝒫  ℝ )  →  ( ( vol* ‘ 𝑧 )  ∈  ℝ  →  ( ( vol* ‘ ( 𝑧  ∩  ∪  ran  ( (,)  ∘  𝐹 ) ) )  +  ( vol* ‘ ( 𝑧  ∖  ∪  ran  ( (,)  ∘  𝐹 ) ) ) )  ≤  ( vol* ‘ 𝑧 ) ) ) | 
						
							| 68 | 67 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑧  ∈  𝒫  ℝ ( ( vol* ‘ 𝑧 )  ∈  ℝ  →  ( ( vol* ‘ ( 𝑧  ∩  ∪  ran  ( (,)  ∘  𝐹 ) ) )  +  ( vol* ‘ ( 𝑧  ∖  ∪  ran  ( (,)  ∘  𝐹 ) ) ) )  ≤  ( vol* ‘ 𝑧 ) ) ) | 
						
							| 69 |  | ismbl2 | ⊢ ( ∪  ran  ( (,)  ∘  𝐹 )  ∈  dom  vol  ↔  ( ∪  ran  ( (,)  ∘  𝐹 )  ⊆  ℝ  ∧  ∀ 𝑧  ∈  𝒫  ℝ ( ( vol* ‘ 𝑧 )  ∈  ℝ  →  ( ( vol* ‘ ( 𝑧  ∩  ∪  ran  ( (,)  ∘  𝐹 ) ) )  +  ( vol* ‘ ( 𝑧  ∖  ∪  ran  ( (,)  ∘  𝐹 ) ) ) )  ≤  ( vol* ‘ 𝑧 ) ) ) ) | 
						
							| 70 | 14 68 69 | sylanbrc | ⊢ ( 𝜑  →  ∪  ran  ( (,)  ∘  𝐹 )  ∈  dom  vol ) |