Metamath Proof Explorer


Theorem uniioombl

Description: A disjoint union of open intervals is measurable. (This proof does not use countable choice, unlike iunmbl .) Lemma 565Ca of Fremlin5 p. 214. (Contributed by Mario Carneiro, 26-Mar-2015)

Ref Expression
Hypotheses uniioombl.1 ( 𝜑𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) )
uniioombl.2 ( 𝜑Disj 𝑥 ∈ ℕ ( (,) ‘ ( 𝐹𝑥 ) ) )
uniioombl.3 𝑆 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐹 ) )
Assertion uniioombl ( 𝜑 ran ( (,) ∘ 𝐹 ) ∈ dom vol )

Proof

Step Hyp Ref Expression
1 uniioombl.1 ( 𝜑𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) )
2 uniioombl.2 ( 𝜑Disj 𝑥 ∈ ℕ ( (,) ‘ ( 𝐹𝑥 ) ) )
3 uniioombl.3 𝑆 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐹 ) )
4 ioof (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ
5 inss2 ( ≤ ∩ ( ℝ × ℝ ) ) ⊆ ( ℝ × ℝ )
6 rexpssxrxp ( ℝ × ℝ ) ⊆ ( ℝ* × ℝ* )
7 5 6 sstri ( ≤ ∩ ( ℝ × ℝ ) ) ⊆ ( ℝ* × ℝ* )
8 fss ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ ( ≤ ∩ ( ℝ × ℝ ) ) ⊆ ( ℝ* × ℝ* ) ) → 𝐹 : ℕ ⟶ ( ℝ* × ℝ* ) )
9 1 7 8 sylancl ( 𝜑𝐹 : ℕ ⟶ ( ℝ* × ℝ* ) )
10 fco ( ( (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ ∧ 𝐹 : ℕ ⟶ ( ℝ* × ℝ* ) ) → ( (,) ∘ 𝐹 ) : ℕ ⟶ 𝒫 ℝ )
11 4 9 10 sylancr ( 𝜑 → ( (,) ∘ 𝐹 ) : ℕ ⟶ 𝒫 ℝ )
12 11 frnd ( 𝜑 → ran ( (,) ∘ 𝐹 ) ⊆ 𝒫 ℝ )
13 sspwuni ( ran ( (,) ∘ 𝐹 ) ⊆ 𝒫 ℝ ↔ ran ( (,) ∘ 𝐹 ) ⊆ ℝ )
14 12 13 sylib ( 𝜑 ran ( (,) ∘ 𝐹 ) ⊆ ℝ )
15 elpwi ( 𝑧 ∈ 𝒫 ℝ → 𝑧 ⊆ ℝ )
16 15 ad2antrl ( ( 𝜑 ∧ ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ) → 𝑧 ⊆ ℝ )
17 simprr ( ( 𝜑 ∧ ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ) → ( vol* ‘ 𝑧 ) ∈ ℝ )
18 rphalfcl ( 𝑟 ∈ ℝ+ → ( 𝑟 / 2 ) ∈ ℝ+ )
19 18 rphalfcld ( 𝑟 ∈ ℝ+ → ( ( 𝑟 / 2 ) / 2 ) ∈ ℝ+ )
20 eqid seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) )
21 20 ovolgelb ( ( 𝑧 ⊆ ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ∧ ( ( 𝑟 / 2 ) / 2 ) ∈ ℝ+ ) → ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝑧 ran ( (,) ∘ 𝑓 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝑧 ) + ( ( 𝑟 / 2 ) / 2 ) ) ) )
22 16 17 19 21 syl2an3an ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ) ∧ 𝑟 ∈ ℝ+ ) → ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝑧 ran ( (,) ∘ 𝑓 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝑧 ) + ( ( 𝑟 / 2 ) / 2 ) ) ) )
23 1 ad3antrrr ( ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ( 𝑧 ran ( (,) ∘ 𝑓 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝑧 ) + ( ( 𝑟 / 2 ) / 2 ) ) ) ) ) → 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) )
24 2 ad3antrrr ( ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ( 𝑧 ran ( (,) ∘ 𝑓 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝑧 ) + ( ( 𝑟 / 2 ) / 2 ) ) ) ) ) → Disj 𝑥 ∈ ℕ ( (,) ‘ ( 𝐹𝑥 ) ) )
25 eqid ran ( (,) ∘ 𝐹 ) = ran ( (,) ∘ 𝐹 )
26 17 adantr ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ) ∧ 𝑟 ∈ ℝ+ ) → ( vol* ‘ 𝑧 ) ∈ ℝ )
27 26 adantr ( ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ( 𝑧 ran ( (,) ∘ 𝑓 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝑧 ) + ( ( 𝑟 / 2 ) / 2 ) ) ) ) ) → ( vol* ‘ 𝑧 ) ∈ ℝ )
28 18 adantl ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ) ∧ 𝑟 ∈ ℝ+ ) → ( 𝑟 / 2 ) ∈ ℝ+ )
29 28 adantr ( ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ( 𝑧 ran ( (,) ∘ 𝑓 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝑧 ) + ( ( 𝑟 / 2 ) / 2 ) ) ) ) ) → ( 𝑟 / 2 ) ∈ ℝ+ )
30 29 rphalfcld ( ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ( 𝑧 ran ( (,) ∘ 𝑓 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝑧 ) + ( ( 𝑟 / 2 ) / 2 ) ) ) ) ) → ( ( 𝑟 / 2 ) / 2 ) ∈ ℝ+ )
31 elmapi ( 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) → 𝑓 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) )
32 31 ad2antrl ( ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ( 𝑧 ran ( (,) ∘ 𝑓 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝑧 ) + ( ( 𝑟 / 2 ) / 2 ) ) ) ) ) → 𝑓 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) )
33 simprrl ( ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ( 𝑧 ran ( (,) ∘ 𝑓 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝑧 ) + ( ( 𝑟 / 2 ) / 2 ) ) ) ) ) → 𝑧 ran ( (,) ∘ 𝑓 ) )
34 simprrr ( ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ( 𝑧 ran ( (,) ∘ 𝑓 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝑧 ) + ( ( 𝑟 / 2 ) / 2 ) ) ) ) ) → sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝑧 ) + ( ( 𝑟 / 2 ) / 2 ) ) )
35 23 24 3 25 27 30 32 33 20 34 uniioombllem6 ( ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ( 𝑧 ran ( (,) ∘ 𝑓 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝑧 ) + ( ( 𝑟 / 2 ) / 2 ) ) ) ) ) → ( ( vol* ‘ ( 𝑧 ran ( (,) ∘ 𝐹 ) ) ) + ( vol* ‘ ( 𝑧 ran ( (,) ∘ 𝐹 ) ) ) ) ≤ ( ( vol* ‘ 𝑧 ) + ( 4 · ( ( 𝑟 / 2 ) / 2 ) ) ) )
36 22 35 rexlimddv ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ) ∧ 𝑟 ∈ ℝ+ ) → ( ( vol* ‘ ( 𝑧 ran ( (,) ∘ 𝐹 ) ) ) + ( vol* ‘ ( 𝑧 ran ( (,) ∘ 𝐹 ) ) ) ) ≤ ( ( vol* ‘ 𝑧 ) + ( 4 · ( ( 𝑟 / 2 ) / 2 ) ) ) )
37 rpcn ( 𝑟 ∈ ℝ+𝑟 ∈ ℂ )
38 37 adantl ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ) ∧ 𝑟 ∈ ℝ+ ) → 𝑟 ∈ ℂ )
39 2cnd ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ) ∧ 𝑟 ∈ ℝ+ ) → 2 ∈ ℂ )
40 2ne0 2 ≠ 0
41 40 a1i ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ) ∧ 𝑟 ∈ ℝ+ ) → 2 ≠ 0 )
42 38 39 39 41 41 divdiv1d ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ) ∧ 𝑟 ∈ ℝ+ ) → ( ( 𝑟 / 2 ) / 2 ) = ( 𝑟 / ( 2 · 2 ) ) )
43 2t2e4 ( 2 · 2 ) = 4
44 43 oveq2i ( 𝑟 / ( 2 · 2 ) ) = ( 𝑟 / 4 )
45 42 44 eqtrdi ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ) ∧ 𝑟 ∈ ℝ+ ) → ( ( 𝑟 / 2 ) / 2 ) = ( 𝑟 / 4 ) )
46 45 oveq2d ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ) ∧ 𝑟 ∈ ℝ+ ) → ( 4 · ( ( 𝑟 / 2 ) / 2 ) ) = ( 4 · ( 𝑟 / 4 ) ) )
47 4cn 4 ∈ ℂ
48 47 a1i ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ) ∧ 𝑟 ∈ ℝ+ ) → 4 ∈ ℂ )
49 4ne0 4 ≠ 0
50 49 a1i ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ) ∧ 𝑟 ∈ ℝ+ ) → 4 ≠ 0 )
51 38 48 50 divcan2d ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ) ∧ 𝑟 ∈ ℝ+ ) → ( 4 · ( 𝑟 / 4 ) ) = 𝑟 )
52 46 51 eqtrd ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ) ∧ 𝑟 ∈ ℝ+ ) → ( 4 · ( ( 𝑟 / 2 ) / 2 ) ) = 𝑟 )
53 52 oveq2d ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ) ∧ 𝑟 ∈ ℝ+ ) → ( ( vol* ‘ 𝑧 ) + ( 4 · ( ( 𝑟 / 2 ) / 2 ) ) ) = ( ( vol* ‘ 𝑧 ) + 𝑟 ) )
54 36 53 breqtrd ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ) ∧ 𝑟 ∈ ℝ+ ) → ( ( vol* ‘ ( 𝑧 ran ( (,) ∘ 𝐹 ) ) ) + ( vol* ‘ ( 𝑧 ran ( (,) ∘ 𝐹 ) ) ) ) ≤ ( ( vol* ‘ 𝑧 ) + 𝑟 ) )
55 54 ralrimiva ( ( 𝜑 ∧ ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ) → ∀ 𝑟 ∈ ℝ+ ( ( vol* ‘ ( 𝑧 ran ( (,) ∘ 𝐹 ) ) ) + ( vol* ‘ ( 𝑧 ran ( (,) ∘ 𝐹 ) ) ) ) ≤ ( ( vol* ‘ 𝑧 ) + 𝑟 ) )
56 inss1 ( 𝑧 ran ( (,) ∘ 𝐹 ) ) ⊆ 𝑧
57 56 a1i ( ( 𝜑 ∧ ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ) → ( 𝑧 ran ( (,) ∘ 𝐹 ) ) ⊆ 𝑧 )
58 ovolsscl ( ( ( 𝑧 ran ( (,) ∘ 𝐹 ) ) ⊆ 𝑧𝑧 ⊆ ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) → ( vol* ‘ ( 𝑧 ran ( (,) ∘ 𝐹 ) ) ) ∈ ℝ )
59 57 16 17 58 syl3anc ( ( 𝜑 ∧ ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ) → ( vol* ‘ ( 𝑧 ran ( (,) ∘ 𝐹 ) ) ) ∈ ℝ )
60 difssd ( ( 𝜑 ∧ ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ) → ( 𝑧 ran ( (,) ∘ 𝐹 ) ) ⊆ 𝑧 )
61 ovolsscl ( ( ( 𝑧 ran ( (,) ∘ 𝐹 ) ) ⊆ 𝑧𝑧 ⊆ ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) → ( vol* ‘ ( 𝑧 ran ( (,) ∘ 𝐹 ) ) ) ∈ ℝ )
62 60 16 17 61 syl3anc ( ( 𝜑 ∧ ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ) → ( vol* ‘ ( 𝑧 ran ( (,) ∘ 𝐹 ) ) ) ∈ ℝ )
63 59 62 readdcld ( ( 𝜑 ∧ ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ) → ( ( vol* ‘ ( 𝑧 ran ( (,) ∘ 𝐹 ) ) ) + ( vol* ‘ ( 𝑧 ran ( (,) ∘ 𝐹 ) ) ) ) ∈ ℝ )
64 alrple ( ( ( ( vol* ‘ ( 𝑧 ran ( (,) ∘ 𝐹 ) ) ) + ( vol* ‘ ( 𝑧 ran ( (,) ∘ 𝐹 ) ) ) ) ∈ ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) → ( ( ( vol* ‘ ( 𝑧 ran ( (,) ∘ 𝐹 ) ) ) + ( vol* ‘ ( 𝑧 ran ( (,) ∘ 𝐹 ) ) ) ) ≤ ( vol* ‘ 𝑧 ) ↔ ∀ 𝑟 ∈ ℝ+ ( ( vol* ‘ ( 𝑧 ran ( (,) ∘ 𝐹 ) ) ) + ( vol* ‘ ( 𝑧 ran ( (,) ∘ 𝐹 ) ) ) ) ≤ ( ( vol* ‘ 𝑧 ) + 𝑟 ) ) )
65 63 17 64 syl2anc ( ( 𝜑 ∧ ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ) → ( ( ( vol* ‘ ( 𝑧 ran ( (,) ∘ 𝐹 ) ) ) + ( vol* ‘ ( 𝑧 ran ( (,) ∘ 𝐹 ) ) ) ) ≤ ( vol* ‘ 𝑧 ) ↔ ∀ 𝑟 ∈ ℝ+ ( ( vol* ‘ ( 𝑧 ran ( (,) ∘ 𝐹 ) ) ) + ( vol* ‘ ( 𝑧 ran ( (,) ∘ 𝐹 ) ) ) ) ≤ ( ( vol* ‘ 𝑧 ) + 𝑟 ) ) )
66 55 65 mpbird ( ( 𝜑 ∧ ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ) → ( ( vol* ‘ ( 𝑧 ran ( (,) ∘ 𝐹 ) ) ) + ( vol* ‘ ( 𝑧 ran ( (,) ∘ 𝐹 ) ) ) ) ≤ ( vol* ‘ 𝑧 ) )
67 66 expr ( ( 𝜑𝑧 ∈ 𝒫 ℝ ) → ( ( vol* ‘ 𝑧 ) ∈ ℝ → ( ( vol* ‘ ( 𝑧 ran ( (,) ∘ 𝐹 ) ) ) + ( vol* ‘ ( 𝑧 ran ( (,) ∘ 𝐹 ) ) ) ) ≤ ( vol* ‘ 𝑧 ) ) )
68 67 ralrimiva ( 𝜑 → ∀ 𝑧 ∈ 𝒫 ℝ ( ( vol* ‘ 𝑧 ) ∈ ℝ → ( ( vol* ‘ ( 𝑧 ran ( (,) ∘ 𝐹 ) ) ) + ( vol* ‘ ( 𝑧 ran ( (,) ∘ 𝐹 ) ) ) ) ≤ ( vol* ‘ 𝑧 ) ) )
69 ismbl2 ( ran ( (,) ∘ 𝐹 ) ∈ dom vol ↔ ( ran ( (,) ∘ 𝐹 ) ⊆ ℝ ∧ ∀ 𝑧 ∈ 𝒫 ℝ ( ( vol* ‘ 𝑧 ) ∈ ℝ → ( ( vol* ‘ ( 𝑧 ran ( (,) ∘ 𝐹 ) ) ) + ( vol* ‘ ( 𝑧 ran ( (,) ∘ 𝐹 ) ) ) ) ≤ ( vol* ‘ 𝑧 ) ) ) )
70 14 68 69 sylanbrc ( 𝜑 ran ( (,) ∘ 𝐹 ) ∈ dom vol )