Step |
Hyp |
Ref |
Expression |
1 |
|
uniioombl.1 |
⊢ ( 𝜑 → 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
2 |
|
uniioombl.2 |
⊢ ( 𝜑 → Disj 𝑥 ∈ ℕ ( (,) ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
3 |
|
uniioombl.3 |
⊢ 𝑆 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐹 ) ) |
4 |
|
uniioombl.a |
⊢ 𝐴 = ∪ ran ( (,) ∘ 𝐹 ) |
5 |
|
uniioombl.e |
⊢ ( 𝜑 → ( vol* ‘ 𝐸 ) ∈ ℝ ) |
6 |
|
uniioombl.c |
⊢ ( 𝜑 → 𝐶 ∈ ℝ+ ) |
7 |
|
uniioombl.g |
⊢ ( 𝜑 → 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
8 |
|
uniioombl.s |
⊢ ( 𝜑 → 𝐸 ⊆ ∪ ran ( (,) ∘ 𝐺 ) ) |
9 |
|
uniioombl.t |
⊢ 𝑇 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) |
10 |
|
uniioombl.v |
⊢ ( 𝜑 → sup ( ran 𝑇 , ℝ* , < ) ≤ ( ( vol* ‘ 𝐸 ) + 𝐶 ) ) |
11 |
|
eqid |
⊢ ( ( abs ∘ − ) ∘ 𝐺 ) = ( ( abs ∘ − ) ∘ 𝐺 ) |
12 |
11 9
|
ovolsf |
⊢ ( 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → 𝑇 : ℕ ⟶ ( 0 [,) +∞ ) ) |
13 |
7 12
|
syl |
⊢ ( 𝜑 → 𝑇 : ℕ ⟶ ( 0 [,) +∞ ) ) |
14 |
13
|
frnd |
⊢ ( 𝜑 → ran 𝑇 ⊆ ( 0 [,) +∞ ) ) |
15 |
|
rge0ssre |
⊢ ( 0 [,) +∞ ) ⊆ ℝ |
16 |
14 15
|
sstrdi |
⊢ ( 𝜑 → ran 𝑇 ⊆ ℝ ) |
17 |
|
1nn |
⊢ 1 ∈ ℕ |
18 |
13
|
fdmd |
⊢ ( 𝜑 → dom 𝑇 = ℕ ) |
19 |
17 18
|
eleqtrrid |
⊢ ( 𝜑 → 1 ∈ dom 𝑇 ) |
20 |
19
|
ne0d |
⊢ ( 𝜑 → dom 𝑇 ≠ ∅ ) |
21 |
|
dm0rn0 |
⊢ ( dom 𝑇 = ∅ ↔ ran 𝑇 = ∅ ) |
22 |
21
|
necon3bii |
⊢ ( dom 𝑇 ≠ ∅ ↔ ran 𝑇 ≠ ∅ ) |
23 |
20 22
|
sylib |
⊢ ( 𝜑 → ran 𝑇 ≠ ∅ ) |
24 |
|
icossxr |
⊢ ( 0 [,) +∞ ) ⊆ ℝ* |
25 |
14 24
|
sstrdi |
⊢ ( 𝜑 → ran 𝑇 ⊆ ℝ* ) |
26 |
|
supxrcl |
⊢ ( ran 𝑇 ⊆ ℝ* → sup ( ran 𝑇 , ℝ* , < ) ∈ ℝ* ) |
27 |
25 26
|
syl |
⊢ ( 𝜑 → sup ( ran 𝑇 , ℝ* , < ) ∈ ℝ* ) |
28 |
6
|
rpred |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
29 |
5 28
|
readdcld |
⊢ ( 𝜑 → ( ( vol* ‘ 𝐸 ) + 𝐶 ) ∈ ℝ ) |
30 |
29
|
rexrd |
⊢ ( 𝜑 → ( ( vol* ‘ 𝐸 ) + 𝐶 ) ∈ ℝ* ) |
31 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
32 |
31
|
a1i |
⊢ ( 𝜑 → +∞ ∈ ℝ* ) |
33 |
29
|
ltpnfd |
⊢ ( 𝜑 → ( ( vol* ‘ 𝐸 ) + 𝐶 ) < +∞ ) |
34 |
27 30 32 10 33
|
xrlelttrd |
⊢ ( 𝜑 → sup ( ran 𝑇 , ℝ* , < ) < +∞ ) |
35 |
|
supxrbnd |
⊢ ( ( ran 𝑇 ⊆ ℝ ∧ ran 𝑇 ≠ ∅ ∧ sup ( ran 𝑇 , ℝ* , < ) < +∞ ) → sup ( ran 𝑇 , ℝ* , < ) ∈ ℝ ) |
36 |
16 23 34 35
|
syl3anc |
⊢ ( 𝜑 → sup ( ran 𝑇 , ℝ* , < ) ∈ ℝ ) |