Metamath Proof Explorer


Theorem uniioombllem1

Description: Lemma for uniioombl . (Contributed by Mario Carneiro, 25-Mar-2015)

Ref Expression
Hypotheses uniioombl.1 ( 𝜑𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) )
uniioombl.2 ( 𝜑Disj 𝑥 ∈ ℕ ( (,) ‘ ( 𝐹𝑥 ) ) )
uniioombl.3 𝑆 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐹 ) )
uniioombl.a 𝐴 = ran ( (,) ∘ 𝐹 )
uniioombl.e ( 𝜑 → ( vol* ‘ 𝐸 ) ∈ ℝ )
uniioombl.c ( 𝜑𝐶 ∈ ℝ+ )
uniioombl.g ( 𝜑𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) )
uniioombl.s ( 𝜑𝐸 ran ( (,) ∘ 𝐺 ) )
uniioombl.t 𝑇 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) )
uniioombl.v ( 𝜑 → sup ( ran 𝑇 , ℝ* , < ) ≤ ( ( vol* ‘ 𝐸 ) + 𝐶 ) )
Assertion uniioombllem1 ( 𝜑 → sup ( ran 𝑇 , ℝ* , < ) ∈ ℝ )

Proof

Step Hyp Ref Expression
1 uniioombl.1 ( 𝜑𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) )
2 uniioombl.2 ( 𝜑Disj 𝑥 ∈ ℕ ( (,) ‘ ( 𝐹𝑥 ) ) )
3 uniioombl.3 𝑆 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐹 ) )
4 uniioombl.a 𝐴 = ran ( (,) ∘ 𝐹 )
5 uniioombl.e ( 𝜑 → ( vol* ‘ 𝐸 ) ∈ ℝ )
6 uniioombl.c ( 𝜑𝐶 ∈ ℝ+ )
7 uniioombl.g ( 𝜑𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) )
8 uniioombl.s ( 𝜑𝐸 ran ( (,) ∘ 𝐺 ) )
9 uniioombl.t 𝑇 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) )
10 uniioombl.v ( 𝜑 → sup ( ran 𝑇 , ℝ* , < ) ≤ ( ( vol* ‘ 𝐸 ) + 𝐶 ) )
11 eqid ( ( abs ∘ − ) ∘ 𝐺 ) = ( ( abs ∘ − ) ∘ 𝐺 )
12 11 9 ovolsf ( 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → 𝑇 : ℕ ⟶ ( 0 [,) +∞ ) )
13 7 12 syl ( 𝜑𝑇 : ℕ ⟶ ( 0 [,) +∞ ) )
14 13 frnd ( 𝜑 → ran 𝑇 ⊆ ( 0 [,) +∞ ) )
15 rge0ssre ( 0 [,) +∞ ) ⊆ ℝ
16 14 15 sstrdi ( 𝜑 → ran 𝑇 ⊆ ℝ )
17 1nn 1 ∈ ℕ
18 13 fdmd ( 𝜑 → dom 𝑇 = ℕ )
19 17 18 eleqtrrid ( 𝜑 → 1 ∈ dom 𝑇 )
20 19 ne0d ( 𝜑 → dom 𝑇 ≠ ∅ )
21 dm0rn0 ( dom 𝑇 = ∅ ↔ ran 𝑇 = ∅ )
22 21 necon3bii ( dom 𝑇 ≠ ∅ ↔ ran 𝑇 ≠ ∅ )
23 20 22 sylib ( 𝜑 → ran 𝑇 ≠ ∅ )
24 icossxr ( 0 [,) +∞ ) ⊆ ℝ*
25 14 24 sstrdi ( 𝜑 → ran 𝑇 ⊆ ℝ* )
26 supxrcl ( ran 𝑇 ⊆ ℝ* → sup ( ran 𝑇 , ℝ* , < ) ∈ ℝ* )
27 25 26 syl ( 𝜑 → sup ( ran 𝑇 , ℝ* , < ) ∈ ℝ* )
28 6 rpred ( 𝜑𝐶 ∈ ℝ )
29 5 28 readdcld ( 𝜑 → ( ( vol* ‘ 𝐸 ) + 𝐶 ) ∈ ℝ )
30 29 rexrd ( 𝜑 → ( ( vol* ‘ 𝐸 ) + 𝐶 ) ∈ ℝ* )
31 pnfxr +∞ ∈ ℝ*
32 31 a1i ( 𝜑 → +∞ ∈ ℝ* )
33 29 ltpnfd ( 𝜑 → ( ( vol* ‘ 𝐸 ) + 𝐶 ) < +∞ )
34 27 30 32 10 33 xrlelttrd ( 𝜑 → sup ( ran 𝑇 , ℝ* , < ) < +∞ )
35 supxrbnd ( ( ran 𝑇 ⊆ ℝ ∧ ran 𝑇 ≠ ∅ ∧ sup ( ran 𝑇 , ℝ* , < ) < +∞ ) → sup ( ran 𝑇 , ℝ* , < ) ∈ ℝ )
36 16 23 34 35 syl3anc ( 𝜑 → sup ( ran 𝑇 , ℝ* , < ) ∈ ℝ )