| Step |
Hyp |
Ref |
Expression |
| 1 |
|
uniioombl.1 |
⊢ ( 𝜑 → 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 2 |
|
uniioombl.2 |
⊢ ( 𝜑 → Disj 𝑥 ∈ ℕ ( (,) ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
| 3 |
|
uniioombl.3 |
⊢ 𝑆 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐹 ) ) |
| 4 |
|
uniioombl.a |
⊢ 𝐴 = ∪ ran ( (,) ∘ 𝐹 ) |
| 5 |
|
uniioombl.e |
⊢ ( 𝜑 → ( vol* ‘ 𝐸 ) ∈ ℝ ) |
| 6 |
|
uniioombl.c |
⊢ ( 𝜑 → 𝐶 ∈ ℝ+ ) |
| 7 |
|
uniioombl.g |
⊢ ( 𝜑 → 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 8 |
|
uniioombl.s |
⊢ ( 𝜑 → 𝐸 ⊆ ∪ ran ( (,) ∘ 𝐺 ) ) |
| 9 |
|
uniioombl.t |
⊢ 𝑇 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) |
| 10 |
|
uniioombl.v |
⊢ ( 𝜑 → sup ( ran 𝑇 , ℝ* , < ) ≤ ( ( vol* ‘ 𝐸 ) + 𝐶 ) ) |
| 11 |
|
uniioombllem2.h |
⊢ 𝐻 = ( 𝑧 ∈ ℕ ↦ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ) ) |
| 12 |
|
uniioombllem2.k |
⊢ 𝐾 = ( 𝑥 ∈ ran (,) ↦ if ( 𝑥 = ∅ , 〈 0 , 0 〉 , 〈 inf ( 𝑥 , ℝ* , < ) , sup ( 𝑥 , ℝ* , < ) 〉 ) ) |
| 13 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 14 |
|
eqid |
⊢ seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ) = seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ) |
| 15 |
|
1zzd |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → 1 ∈ ℤ ) |
| 16 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ‘ 𝑛 ) = ( ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ‘ 𝑛 ) ) |
| 17 |
1 2 3 4 5 6 7 8 9 10
|
uniioombllem2a |
⊢ ( ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) ∧ 𝑧 ∈ ℕ ) → ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ) ∈ ran (,) ) |
| 18 |
11
|
a1i |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → 𝐻 = ( 𝑧 ∈ ℕ ↦ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ) ) ) |
| 19 |
12
|
ioorf |
⊢ 𝐾 : ran (,) ⟶ ( ≤ ∩ ( ℝ* × ℝ* ) ) |
| 20 |
19
|
a1i |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → 𝐾 : ran (,) ⟶ ( ≤ ∩ ( ℝ* × ℝ* ) ) ) |
| 21 |
20
|
feqmptd |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → 𝐾 = ( 𝑦 ∈ ran (,) ↦ ( 𝐾 ‘ 𝑦 ) ) ) |
| 22 |
|
fveq2 |
⊢ ( 𝑦 = ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ) → ( 𝐾 ‘ 𝑦 ) = ( 𝐾 ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ) ) ) |
| 23 |
17 18 21 22
|
fmptco |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → ( 𝐾 ∘ 𝐻 ) = ( 𝑧 ∈ ℕ ↦ ( 𝐾 ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ) ) ) ) |
| 24 |
|
inss2 |
⊢ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ) ⊆ ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) |
| 25 |
|
inss2 |
⊢ ( ≤ ∩ ( ℝ × ℝ ) ) ⊆ ( ℝ × ℝ ) |
| 26 |
7
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → ( 𝐺 ‘ 𝐽 ) ∈ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 27 |
25 26
|
sselid |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → ( 𝐺 ‘ 𝐽 ) ∈ ( ℝ × ℝ ) ) |
| 28 |
|
1st2nd2 |
⊢ ( ( 𝐺 ‘ 𝐽 ) ∈ ( ℝ × ℝ ) → ( 𝐺 ‘ 𝐽 ) = 〈 ( 1st ‘ ( 𝐺 ‘ 𝐽 ) ) , ( 2nd ‘ ( 𝐺 ‘ 𝐽 ) ) 〉 ) |
| 29 |
27 28
|
syl |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → ( 𝐺 ‘ 𝐽 ) = 〈 ( 1st ‘ ( 𝐺 ‘ 𝐽 ) ) , ( 2nd ‘ ( 𝐺 ‘ 𝐽 ) ) 〉 ) |
| 30 |
29
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) = ( (,) ‘ 〈 ( 1st ‘ ( 𝐺 ‘ 𝐽 ) ) , ( 2nd ‘ ( 𝐺 ‘ 𝐽 ) ) 〉 ) ) |
| 31 |
|
df-ov |
⊢ ( ( 1st ‘ ( 𝐺 ‘ 𝐽 ) ) (,) ( 2nd ‘ ( 𝐺 ‘ 𝐽 ) ) ) = ( (,) ‘ 〈 ( 1st ‘ ( 𝐺 ‘ 𝐽 ) ) , ( 2nd ‘ ( 𝐺 ‘ 𝐽 ) ) 〉 ) |
| 32 |
30 31
|
eqtr4di |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) = ( ( 1st ‘ ( 𝐺 ‘ 𝐽 ) ) (,) ( 2nd ‘ ( 𝐺 ‘ 𝐽 ) ) ) ) |
| 33 |
|
ioossre |
⊢ ( ( 1st ‘ ( 𝐺 ‘ 𝐽 ) ) (,) ( 2nd ‘ ( 𝐺 ‘ 𝐽 ) ) ) ⊆ ℝ |
| 34 |
32 33
|
eqsstrdi |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ⊆ ℝ ) |
| 35 |
32
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → ( vol* ‘ ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ) = ( vol* ‘ ( ( 1st ‘ ( 𝐺 ‘ 𝐽 ) ) (,) ( 2nd ‘ ( 𝐺 ‘ 𝐽 ) ) ) ) ) |
| 36 |
|
ovolfcl |
⊢ ( ( 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝐽 ∈ ℕ ) → ( ( 1st ‘ ( 𝐺 ‘ 𝐽 ) ) ∈ ℝ ∧ ( 2nd ‘ ( 𝐺 ‘ 𝐽 ) ) ∈ ℝ ∧ ( 1st ‘ ( 𝐺 ‘ 𝐽 ) ) ≤ ( 2nd ‘ ( 𝐺 ‘ 𝐽 ) ) ) ) |
| 37 |
7 36
|
sylan |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → ( ( 1st ‘ ( 𝐺 ‘ 𝐽 ) ) ∈ ℝ ∧ ( 2nd ‘ ( 𝐺 ‘ 𝐽 ) ) ∈ ℝ ∧ ( 1st ‘ ( 𝐺 ‘ 𝐽 ) ) ≤ ( 2nd ‘ ( 𝐺 ‘ 𝐽 ) ) ) ) |
| 38 |
|
ovolioo |
⊢ ( ( ( 1st ‘ ( 𝐺 ‘ 𝐽 ) ) ∈ ℝ ∧ ( 2nd ‘ ( 𝐺 ‘ 𝐽 ) ) ∈ ℝ ∧ ( 1st ‘ ( 𝐺 ‘ 𝐽 ) ) ≤ ( 2nd ‘ ( 𝐺 ‘ 𝐽 ) ) ) → ( vol* ‘ ( ( 1st ‘ ( 𝐺 ‘ 𝐽 ) ) (,) ( 2nd ‘ ( 𝐺 ‘ 𝐽 ) ) ) ) = ( ( 2nd ‘ ( 𝐺 ‘ 𝐽 ) ) − ( 1st ‘ ( 𝐺 ‘ 𝐽 ) ) ) ) |
| 39 |
37 38
|
syl |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → ( vol* ‘ ( ( 1st ‘ ( 𝐺 ‘ 𝐽 ) ) (,) ( 2nd ‘ ( 𝐺 ‘ 𝐽 ) ) ) ) = ( ( 2nd ‘ ( 𝐺 ‘ 𝐽 ) ) − ( 1st ‘ ( 𝐺 ‘ 𝐽 ) ) ) ) |
| 40 |
35 39
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → ( vol* ‘ ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ) = ( ( 2nd ‘ ( 𝐺 ‘ 𝐽 ) ) − ( 1st ‘ ( 𝐺 ‘ 𝐽 ) ) ) ) |
| 41 |
37
|
simp2d |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → ( 2nd ‘ ( 𝐺 ‘ 𝐽 ) ) ∈ ℝ ) |
| 42 |
37
|
simp1d |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → ( 1st ‘ ( 𝐺 ‘ 𝐽 ) ) ∈ ℝ ) |
| 43 |
41 42
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → ( ( 2nd ‘ ( 𝐺 ‘ 𝐽 ) ) − ( 1st ‘ ( 𝐺 ‘ 𝐽 ) ) ) ∈ ℝ ) |
| 44 |
40 43
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → ( vol* ‘ ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ) ∈ ℝ ) |
| 45 |
|
ovolsscl |
⊢ ( ( ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ) ⊆ ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ∧ ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ⊆ ℝ ∧ ( vol* ‘ ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ) ∈ ℝ ) → ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ) ) ∈ ℝ ) |
| 46 |
24 34 44 45
|
mp3an2i |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ) ) ∈ ℝ ) |
| 47 |
46
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) ∧ 𝑧 ∈ ℕ ) → ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ) ) ∈ ℝ ) |
| 48 |
12
|
ioorcl |
⊢ ( ( ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ) ∈ ran (,) ∧ ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ) ) ∈ ℝ ) → ( 𝐾 ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ) ) ∈ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 49 |
17 47 48
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) ∧ 𝑧 ∈ ℕ ) → ( 𝐾 ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ) ) ∈ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 50 |
23 49
|
fmpt3d |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → ( 𝐾 ∘ 𝐻 ) : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 51 |
|
eqid |
⊢ ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) = ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) |
| 52 |
51
|
ovolfsf |
⊢ ( ( 𝐾 ∘ 𝐻 ) : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) : ℕ ⟶ ( 0 [,) +∞ ) ) |
| 53 |
50 52
|
syl |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) : ℕ ⟶ ( 0 [,) +∞ ) ) |
| 54 |
53
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ‘ 𝑛 ) ∈ ( 0 [,) +∞ ) ) |
| 55 |
|
elrege0 |
⊢ ( ( ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ‘ 𝑛 ) ∈ ( 0 [,) +∞ ) ↔ ( ( ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ‘ 𝑛 ) ∈ ℝ ∧ 0 ≤ ( ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ‘ 𝑛 ) ) ) |
| 56 |
54 55
|
sylib |
⊢ ( ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) → ( ( ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ‘ 𝑛 ) ∈ ℝ ∧ 0 ≤ ( ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ‘ 𝑛 ) ) ) |
| 57 |
56
|
simpld |
⊢ ( ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ‘ 𝑛 ) ∈ ℝ ) |
| 58 |
56
|
simprd |
⊢ ( ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) → 0 ≤ ( ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ‘ 𝑛 ) ) |
| 59 |
23
|
fveq1d |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → ( ( 𝐾 ∘ 𝐻 ) ‘ 𝑧 ) = ( ( 𝑧 ∈ ℕ ↦ ( 𝐾 ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ) ) ) ‘ 𝑧 ) ) |
| 60 |
|
fvex |
⊢ ( 𝐾 ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ) ) ∈ V |
| 61 |
|
eqid |
⊢ ( 𝑧 ∈ ℕ ↦ ( 𝐾 ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ) ) ) = ( 𝑧 ∈ ℕ ↦ ( 𝐾 ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ) ) ) |
| 62 |
61
|
fvmpt2 |
⊢ ( ( 𝑧 ∈ ℕ ∧ ( 𝐾 ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ) ) ∈ V ) → ( ( 𝑧 ∈ ℕ ↦ ( 𝐾 ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ) ) ) ‘ 𝑧 ) = ( 𝐾 ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ) ) ) |
| 63 |
60 62
|
mpan2 |
⊢ ( 𝑧 ∈ ℕ → ( ( 𝑧 ∈ ℕ ↦ ( 𝐾 ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ) ) ) ‘ 𝑧 ) = ( 𝐾 ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ) ) ) |
| 64 |
59 63
|
sylan9eq |
⊢ ( ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) ∧ 𝑧 ∈ ℕ ) → ( ( 𝐾 ∘ 𝐻 ) ‘ 𝑧 ) = ( 𝐾 ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ) ) ) |
| 65 |
64
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) ∧ 𝑧 ∈ ℕ ) → ( (,) ‘ ( ( 𝐾 ∘ 𝐻 ) ‘ 𝑧 ) ) = ( (,) ‘ ( 𝐾 ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ) ) ) ) |
| 66 |
12
|
ioorinv |
⊢ ( ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ) ∈ ran (,) → ( (,) ‘ ( 𝐾 ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ) ) ) = ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ) ) |
| 67 |
17 66
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) ∧ 𝑧 ∈ ℕ ) → ( (,) ‘ ( 𝐾 ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ) ) ) = ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ) ) |
| 68 |
65 67
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) ∧ 𝑧 ∈ ℕ ) → ( (,) ‘ ( ( 𝐾 ∘ 𝐻 ) ‘ 𝑧 ) ) = ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ) ) |
| 69 |
68
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → ∀ 𝑧 ∈ ℕ ( (,) ‘ ( ( 𝐾 ∘ 𝐻 ) ‘ 𝑧 ) ) = ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ) ) |
| 70 |
|
2fveq3 |
⊢ ( 𝑧 = 𝑥 → ( (,) ‘ ( ( 𝐾 ∘ 𝐻 ) ‘ 𝑧 ) ) = ( (,) ‘ ( ( 𝐾 ∘ 𝐻 ) ‘ 𝑥 ) ) ) |
| 71 |
|
2fveq3 |
⊢ ( 𝑧 = 𝑥 → ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) = ( (,) ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
| 72 |
71
|
ineq1d |
⊢ ( 𝑧 = 𝑥 → ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ) = ( ( (,) ‘ ( 𝐹 ‘ 𝑥 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ) ) |
| 73 |
70 72
|
eqeq12d |
⊢ ( 𝑧 = 𝑥 → ( ( (,) ‘ ( ( 𝐾 ∘ 𝐻 ) ‘ 𝑧 ) ) = ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ) ↔ ( (,) ‘ ( ( 𝐾 ∘ 𝐻 ) ‘ 𝑥 ) ) = ( ( (,) ‘ ( 𝐹 ‘ 𝑥 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ) ) ) |
| 74 |
73
|
rspccva |
⊢ ( ( ∀ 𝑧 ∈ ℕ ( (,) ‘ ( ( 𝐾 ∘ 𝐻 ) ‘ 𝑧 ) ) = ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ) ∧ 𝑥 ∈ ℕ ) → ( (,) ‘ ( ( 𝐾 ∘ 𝐻 ) ‘ 𝑥 ) ) = ( ( (,) ‘ ( 𝐹 ‘ 𝑥 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ) ) |
| 75 |
69 74
|
sylan |
⊢ ( ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) ∧ 𝑥 ∈ ℕ ) → ( (,) ‘ ( ( 𝐾 ∘ 𝐻 ) ‘ 𝑥 ) ) = ( ( (,) ‘ ( 𝐹 ‘ 𝑥 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ) ) |
| 76 |
|
inss1 |
⊢ ( ( (,) ‘ ( 𝐹 ‘ 𝑥 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ) ⊆ ( (,) ‘ ( 𝐹 ‘ 𝑥 ) ) |
| 77 |
75 76
|
eqsstrdi |
⊢ ( ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) ∧ 𝑥 ∈ ℕ ) → ( (,) ‘ ( ( 𝐾 ∘ 𝐻 ) ‘ 𝑥 ) ) ⊆ ( (,) ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
| 78 |
77
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → ∀ 𝑥 ∈ ℕ ( (,) ‘ ( ( 𝐾 ∘ 𝐻 ) ‘ 𝑥 ) ) ⊆ ( (,) ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
| 79 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → Disj 𝑥 ∈ ℕ ( (,) ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
| 80 |
|
disjss2 |
⊢ ( ∀ 𝑥 ∈ ℕ ( (,) ‘ ( ( 𝐾 ∘ 𝐻 ) ‘ 𝑥 ) ) ⊆ ( (,) ‘ ( 𝐹 ‘ 𝑥 ) ) → ( Disj 𝑥 ∈ ℕ ( (,) ‘ ( 𝐹 ‘ 𝑥 ) ) → Disj 𝑥 ∈ ℕ ( (,) ‘ ( ( 𝐾 ∘ 𝐻 ) ‘ 𝑥 ) ) ) ) |
| 81 |
78 79 80
|
sylc |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → Disj 𝑥 ∈ ℕ ( (,) ‘ ( ( 𝐾 ∘ 𝐻 ) ‘ 𝑥 ) ) ) |
| 82 |
50 81 14
|
uniioovol |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → ( vol* ‘ ∪ ran ( (,) ∘ ( 𝐾 ∘ 𝐻 ) ) ) = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ) , ℝ* , < ) ) |
| 83 |
67
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → ( 𝑧 ∈ ℕ ↦ ( (,) ‘ ( 𝐾 ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ) ) ) ) = ( 𝑧 ∈ ℕ ↦ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ) ) ) |
| 84 |
|
rexpssxrxp |
⊢ ( ℝ × ℝ ) ⊆ ( ℝ* × ℝ* ) |
| 85 |
25 84
|
sstri |
⊢ ( ≤ ∩ ( ℝ × ℝ ) ) ⊆ ( ℝ* × ℝ* ) |
| 86 |
85 49
|
sselid |
⊢ ( ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) ∧ 𝑧 ∈ ℕ ) → ( 𝐾 ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ) ) ∈ ( ℝ* × ℝ* ) ) |
| 87 |
|
ioof |
⊢ (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ |
| 88 |
87
|
a1i |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ ) |
| 89 |
88
|
feqmptd |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → (,) = ( 𝑦 ∈ ( ℝ* × ℝ* ) ↦ ( (,) ‘ 𝑦 ) ) ) |
| 90 |
|
fveq2 |
⊢ ( 𝑦 = ( 𝐾 ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ) ) → ( (,) ‘ 𝑦 ) = ( (,) ‘ ( 𝐾 ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ) ) ) ) |
| 91 |
86 23 89 90
|
fmptco |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → ( (,) ∘ ( 𝐾 ∘ 𝐻 ) ) = ( 𝑧 ∈ ℕ ↦ ( (,) ‘ ( 𝐾 ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ) ) ) ) ) |
| 92 |
83 91 18
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → ( (,) ∘ ( 𝐾 ∘ 𝐻 ) ) = 𝐻 ) |
| 93 |
92
|
rneqd |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → ran ( (,) ∘ ( 𝐾 ∘ 𝐻 ) ) = ran 𝐻 ) |
| 94 |
93
|
unieqd |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → ∪ ran ( (,) ∘ ( 𝐾 ∘ 𝐻 ) ) = ∪ ran 𝐻 ) |
| 95 |
|
fvex |
⊢ ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∈ V |
| 96 |
95
|
inex1 |
⊢ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ) ∈ V |
| 97 |
11
|
fvmpt2 |
⊢ ( ( 𝑧 ∈ ℕ ∧ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ) ∈ V ) → ( 𝐻 ‘ 𝑧 ) = ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ) ) |
| 98 |
96 97
|
mpan2 |
⊢ ( 𝑧 ∈ ℕ → ( 𝐻 ‘ 𝑧 ) = ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ) ) |
| 99 |
|
incom |
⊢ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ) = ( ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ∩ ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ) |
| 100 |
98 99
|
eqtrdi |
⊢ ( 𝑧 ∈ ℕ → ( 𝐻 ‘ 𝑧 ) = ( ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ∩ ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 101 |
100
|
iuneq2i |
⊢ ∪ 𝑧 ∈ ℕ ( 𝐻 ‘ 𝑧 ) = ∪ 𝑧 ∈ ℕ ( ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ∩ ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ) |
| 102 |
|
iunin2 |
⊢ ∪ 𝑧 ∈ ℕ ( ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ∩ ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ) = ( ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ∩ ∪ 𝑧 ∈ ℕ ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ) |
| 103 |
101 102
|
eqtri |
⊢ ∪ 𝑧 ∈ ℕ ( 𝐻 ‘ 𝑧 ) = ( ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ∩ ∪ 𝑧 ∈ ℕ ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ) |
| 104 |
17 11
|
fmptd |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → 𝐻 : ℕ ⟶ ran (,) ) |
| 105 |
104
|
ffnd |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → 𝐻 Fn ℕ ) |
| 106 |
|
fniunfv |
⊢ ( 𝐻 Fn ℕ → ∪ 𝑧 ∈ ℕ ( 𝐻 ‘ 𝑧 ) = ∪ ran 𝐻 ) |
| 107 |
105 106
|
syl |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → ∪ 𝑧 ∈ ℕ ( 𝐻 ‘ 𝑧 ) = ∪ ran 𝐻 ) |
| 108 |
103 107
|
eqtr3id |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → ( ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ∩ ∪ 𝑧 ∈ ℕ ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ) = ∪ ran 𝐻 ) |
| 109 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 110 |
|
fvco3 |
⊢ ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝑧 ∈ ℕ ) → ( ( (,) ∘ 𝐹 ) ‘ 𝑧 ) = ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ) |
| 111 |
109 110
|
sylan |
⊢ ( ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) ∧ 𝑧 ∈ ℕ ) → ( ( (,) ∘ 𝐹 ) ‘ 𝑧 ) = ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ) |
| 112 |
111
|
iuneq2dv |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → ∪ 𝑧 ∈ ℕ ( ( (,) ∘ 𝐹 ) ‘ 𝑧 ) = ∪ 𝑧 ∈ ℕ ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ) |
| 113 |
|
ffn |
⊢ ( (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ → (,) Fn ( ℝ* × ℝ* ) ) |
| 114 |
87 113
|
ax-mp |
⊢ (,) Fn ( ℝ* × ℝ* ) |
| 115 |
|
fss |
⊢ ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ ( ≤ ∩ ( ℝ × ℝ ) ) ⊆ ( ℝ* × ℝ* ) ) → 𝐹 : ℕ ⟶ ( ℝ* × ℝ* ) ) |
| 116 |
109 85 115
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → 𝐹 : ℕ ⟶ ( ℝ* × ℝ* ) ) |
| 117 |
|
fnfco |
⊢ ( ( (,) Fn ( ℝ* × ℝ* ) ∧ 𝐹 : ℕ ⟶ ( ℝ* × ℝ* ) ) → ( (,) ∘ 𝐹 ) Fn ℕ ) |
| 118 |
114 116 117
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → ( (,) ∘ 𝐹 ) Fn ℕ ) |
| 119 |
|
fniunfv |
⊢ ( ( (,) ∘ 𝐹 ) Fn ℕ → ∪ 𝑧 ∈ ℕ ( ( (,) ∘ 𝐹 ) ‘ 𝑧 ) = ∪ ran ( (,) ∘ 𝐹 ) ) |
| 120 |
118 119
|
syl |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → ∪ 𝑧 ∈ ℕ ( ( (,) ∘ 𝐹 ) ‘ 𝑧 ) = ∪ ran ( (,) ∘ 𝐹 ) ) |
| 121 |
120 4
|
eqtr4di |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → ∪ 𝑧 ∈ ℕ ( ( (,) ∘ 𝐹 ) ‘ 𝑧 ) = 𝐴 ) |
| 122 |
112 121
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → ∪ 𝑧 ∈ ℕ ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) = 𝐴 ) |
| 123 |
122
|
ineq2d |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → ( ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ∩ ∪ 𝑧 ∈ ℕ ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ) = ( ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ∩ 𝐴 ) ) |
| 124 |
94 108 123
|
3eqtr2d |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → ∪ ran ( (,) ∘ ( 𝐾 ∘ 𝐻 ) ) = ( ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ∩ 𝐴 ) ) |
| 125 |
124
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → ( vol* ‘ ∪ ran ( (,) ∘ ( 𝐾 ∘ 𝐻 ) ) ) = ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ∩ 𝐴 ) ) ) |
| 126 |
82 125
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ) , ℝ* , < ) = ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ∩ 𝐴 ) ) ) |
| 127 |
|
inss1 |
⊢ ( ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ∩ 𝐴 ) ⊆ ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) |
| 128 |
|
ovolsscl |
⊢ ( ( ( ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ∩ 𝐴 ) ⊆ ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ∧ ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ⊆ ℝ ∧ ( vol* ‘ ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ) ∈ ℝ ) → ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ∩ 𝐴 ) ) ∈ ℝ ) |
| 129 |
127 34 44 128
|
mp3an2i |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ∩ 𝐴 ) ) ∈ ℝ ) |
| 130 |
126 129
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ) , ℝ* , < ) ∈ ℝ ) |
| 131 |
51 14
|
ovolsf |
⊢ ( ( 𝐾 ∘ 𝐻 ) : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ) : ℕ ⟶ ( 0 [,) +∞ ) ) |
| 132 |
50 131
|
syl |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ) : ℕ ⟶ ( 0 [,) +∞ ) ) |
| 133 |
132
|
frnd |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ) ⊆ ( 0 [,) +∞ ) ) |
| 134 |
|
icossxr |
⊢ ( 0 [,) +∞ ) ⊆ ℝ* |
| 135 |
133 134
|
sstrdi |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ) ⊆ ℝ* ) |
| 136 |
132
|
ffnd |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ) Fn ℕ ) |
| 137 |
|
fnfvelrn |
⊢ ( ( seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ) Fn ℕ ∧ 𝑦 ∈ ℕ ) → ( seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ) ‘ 𝑦 ) ∈ ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ) ) |
| 138 |
136 137
|
sylan |
⊢ ( ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) ∧ 𝑦 ∈ ℕ ) → ( seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ) ‘ 𝑦 ) ∈ ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ) ) |
| 139 |
|
supxrub |
⊢ ( ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ) ⊆ ℝ* ∧ ( seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ) ‘ 𝑦 ) ∈ ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ) ) → ( seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ) ‘ 𝑦 ) ≤ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ) , ℝ* , < ) ) |
| 140 |
135 138 139
|
syl2an2r |
⊢ ( ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) ∧ 𝑦 ∈ ℕ ) → ( seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ) ‘ 𝑦 ) ≤ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ) , ℝ* , < ) ) |
| 141 |
140
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → ∀ 𝑦 ∈ ℕ ( seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ) ‘ 𝑦 ) ≤ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ) , ℝ* , < ) ) |
| 142 |
|
brralrspcev |
⊢ ( ( sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ) , ℝ* , < ) ∈ ℝ ∧ ∀ 𝑦 ∈ ℕ ( seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ) ‘ 𝑦 ) ≤ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ) , ℝ* , < ) ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ℕ ( seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ) ‘ 𝑦 ) ≤ 𝑥 ) |
| 143 |
130 141 142
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ℕ ( seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ) ‘ 𝑦 ) ≤ 𝑥 ) |
| 144 |
13 14 15 16 57 58 143
|
isumsup2 |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ) ⇝ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ) , ℝ , < ) ) |
| 145 |
51
|
ovolfs2 |
⊢ ( ( 𝐾 ∘ 𝐻 ) : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) = ( ( vol* ∘ (,) ) ∘ ( 𝐾 ∘ 𝐻 ) ) ) |
| 146 |
50 145
|
syl |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) = ( ( vol* ∘ (,) ) ∘ ( 𝐾 ∘ 𝐻 ) ) ) |
| 147 |
|
coass |
⊢ ( ( vol* ∘ (,) ) ∘ ( 𝐾 ∘ 𝐻 ) ) = ( vol* ∘ ( (,) ∘ ( 𝐾 ∘ 𝐻 ) ) ) |
| 148 |
92
|
coeq2d |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → ( vol* ∘ ( (,) ∘ ( 𝐾 ∘ 𝐻 ) ) ) = ( vol* ∘ 𝐻 ) ) |
| 149 |
147 148
|
eqtrid |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → ( ( vol* ∘ (,) ) ∘ ( 𝐾 ∘ 𝐻 ) ) = ( vol* ∘ 𝐻 ) ) |
| 150 |
146 149
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) = ( vol* ∘ 𝐻 ) ) |
| 151 |
150
|
seqeq3d |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ) = seq 1 ( + , ( vol* ∘ 𝐻 ) ) ) |
| 152 |
|
rge0ssre |
⊢ ( 0 [,) +∞ ) ⊆ ℝ |
| 153 |
133 152
|
sstrdi |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ) ⊆ ℝ ) |
| 154 |
|
1nn |
⊢ 1 ∈ ℕ |
| 155 |
132
|
fdmd |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → dom seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ) = ℕ ) |
| 156 |
154 155
|
eleqtrrid |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → 1 ∈ dom seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ) ) |
| 157 |
156
|
ne0d |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → dom seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ) ≠ ∅ ) |
| 158 |
|
dm0rn0 |
⊢ ( dom seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ) = ∅ ↔ ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ) = ∅ ) |
| 159 |
158
|
necon3bii |
⊢ ( dom seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ) ≠ ∅ ↔ ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ) ≠ ∅ ) |
| 160 |
157 159
|
sylib |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ) ≠ ∅ ) |
| 161 |
|
breq1 |
⊢ ( 𝑧 = ( seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ) ‘ 𝑦 ) → ( 𝑧 ≤ 𝑥 ↔ ( seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ) ‘ 𝑦 ) ≤ 𝑥 ) ) |
| 162 |
161
|
ralrn |
⊢ ( seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ) Fn ℕ → ( ∀ 𝑧 ∈ ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ) 𝑧 ≤ 𝑥 ↔ ∀ 𝑦 ∈ ℕ ( seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ) ‘ 𝑦 ) ≤ 𝑥 ) ) |
| 163 |
136 162
|
syl |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → ( ∀ 𝑧 ∈ ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ) 𝑧 ≤ 𝑥 ↔ ∀ 𝑦 ∈ ℕ ( seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ) ‘ 𝑦 ) ≤ 𝑥 ) ) |
| 164 |
163
|
rexbidv |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → ( ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ) 𝑧 ≤ 𝑥 ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ℕ ( seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ) ‘ 𝑦 ) ≤ 𝑥 ) ) |
| 165 |
143 164
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ) 𝑧 ≤ 𝑥 ) |
| 166 |
|
supxrre |
⊢ ( ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ) ⊆ ℝ ∧ ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ) ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ) 𝑧 ≤ 𝑥 ) → sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ) , ℝ* , < ) = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ) , ℝ , < ) ) |
| 167 |
153 160 165 166
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ) , ℝ* , < ) = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ) , ℝ , < ) ) |
| 168 |
167 126
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ) , ℝ , < ) = ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ∩ 𝐴 ) ) ) |
| 169 |
144 151 168
|
3brtr3d |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → seq 1 ( + , ( vol* ∘ 𝐻 ) ) ⇝ ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ∩ 𝐴 ) ) ) |