Metamath Proof Explorer


Theorem uniioombllem2a

Description: Lemma for uniioombl . (Contributed by Mario Carneiro, 7-May-2015)

Ref Expression
Hypotheses uniioombl.1 ( 𝜑𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) )
uniioombl.2 ( 𝜑Disj 𝑥 ∈ ℕ ( (,) ‘ ( 𝐹𝑥 ) ) )
uniioombl.3 𝑆 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐹 ) )
uniioombl.a 𝐴 = ran ( (,) ∘ 𝐹 )
uniioombl.e ( 𝜑 → ( vol* ‘ 𝐸 ) ∈ ℝ )
uniioombl.c ( 𝜑𝐶 ∈ ℝ+ )
uniioombl.g ( 𝜑𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) )
uniioombl.s ( 𝜑𝐸 ran ( (,) ∘ 𝐺 ) )
uniioombl.t 𝑇 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) )
uniioombl.v ( 𝜑 → sup ( ran 𝑇 , ℝ* , < ) ≤ ( ( vol* ‘ 𝐸 ) + 𝐶 ) )
Assertion uniioombllem2a ( ( ( 𝜑𝐽 ∈ ℕ ) ∧ 𝑧 ∈ ℕ ) → ( ( (,) ‘ ( 𝐹𝑧 ) ) ∩ ( (,) ‘ ( 𝐺𝐽 ) ) ) ∈ ran (,) )

Proof

Step Hyp Ref Expression
1 uniioombl.1 ( 𝜑𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) )
2 uniioombl.2 ( 𝜑Disj 𝑥 ∈ ℕ ( (,) ‘ ( 𝐹𝑥 ) ) )
3 uniioombl.3 𝑆 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐹 ) )
4 uniioombl.a 𝐴 = ran ( (,) ∘ 𝐹 )
5 uniioombl.e ( 𝜑 → ( vol* ‘ 𝐸 ) ∈ ℝ )
6 uniioombl.c ( 𝜑𝐶 ∈ ℝ+ )
7 uniioombl.g ( 𝜑𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) )
8 uniioombl.s ( 𝜑𝐸 ran ( (,) ∘ 𝐺 ) )
9 uniioombl.t 𝑇 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) )
10 uniioombl.v ( 𝜑 → sup ( ran 𝑇 , ℝ* , < ) ≤ ( ( vol* ‘ 𝐸 ) + 𝐶 ) )
11 1 adantr ( ( 𝜑𝐽 ∈ ℕ ) → 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) )
12 11 ffvelrnda ( ( ( 𝜑𝐽 ∈ ℕ ) ∧ 𝑧 ∈ ℕ ) → ( 𝐹𝑧 ) ∈ ( ≤ ∩ ( ℝ × ℝ ) ) )
13 12 elin2d ( ( ( 𝜑𝐽 ∈ ℕ ) ∧ 𝑧 ∈ ℕ ) → ( 𝐹𝑧 ) ∈ ( ℝ × ℝ ) )
14 1st2nd2 ( ( 𝐹𝑧 ) ∈ ( ℝ × ℝ ) → ( 𝐹𝑧 ) = ⟨ ( 1st ‘ ( 𝐹𝑧 ) ) , ( 2nd ‘ ( 𝐹𝑧 ) ) ⟩ )
15 13 14 syl ( ( ( 𝜑𝐽 ∈ ℕ ) ∧ 𝑧 ∈ ℕ ) → ( 𝐹𝑧 ) = ⟨ ( 1st ‘ ( 𝐹𝑧 ) ) , ( 2nd ‘ ( 𝐹𝑧 ) ) ⟩ )
16 15 fveq2d ( ( ( 𝜑𝐽 ∈ ℕ ) ∧ 𝑧 ∈ ℕ ) → ( (,) ‘ ( 𝐹𝑧 ) ) = ( (,) ‘ ⟨ ( 1st ‘ ( 𝐹𝑧 ) ) , ( 2nd ‘ ( 𝐹𝑧 ) ) ⟩ ) )
17 df-ov ( ( 1st ‘ ( 𝐹𝑧 ) ) (,) ( 2nd ‘ ( 𝐹𝑧 ) ) ) = ( (,) ‘ ⟨ ( 1st ‘ ( 𝐹𝑧 ) ) , ( 2nd ‘ ( 𝐹𝑧 ) ) ⟩ )
18 16 17 eqtr4di ( ( ( 𝜑𝐽 ∈ ℕ ) ∧ 𝑧 ∈ ℕ ) → ( (,) ‘ ( 𝐹𝑧 ) ) = ( ( 1st ‘ ( 𝐹𝑧 ) ) (,) ( 2nd ‘ ( 𝐹𝑧 ) ) ) )
19 7 ffvelrnda ( ( 𝜑𝐽 ∈ ℕ ) → ( 𝐺𝐽 ) ∈ ( ≤ ∩ ( ℝ × ℝ ) ) )
20 19 elin2d ( ( 𝜑𝐽 ∈ ℕ ) → ( 𝐺𝐽 ) ∈ ( ℝ × ℝ ) )
21 1st2nd2 ( ( 𝐺𝐽 ) ∈ ( ℝ × ℝ ) → ( 𝐺𝐽 ) = ⟨ ( 1st ‘ ( 𝐺𝐽 ) ) , ( 2nd ‘ ( 𝐺𝐽 ) ) ⟩ )
22 20 21 syl ( ( 𝜑𝐽 ∈ ℕ ) → ( 𝐺𝐽 ) = ⟨ ( 1st ‘ ( 𝐺𝐽 ) ) , ( 2nd ‘ ( 𝐺𝐽 ) ) ⟩ )
23 22 fveq2d ( ( 𝜑𝐽 ∈ ℕ ) → ( (,) ‘ ( 𝐺𝐽 ) ) = ( (,) ‘ ⟨ ( 1st ‘ ( 𝐺𝐽 ) ) , ( 2nd ‘ ( 𝐺𝐽 ) ) ⟩ ) )
24 df-ov ( ( 1st ‘ ( 𝐺𝐽 ) ) (,) ( 2nd ‘ ( 𝐺𝐽 ) ) ) = ( (,) ‘ ⟨ ( 1st ‘ ( 𝐺𝐽 ) ) , ( 2nd ‘ ( 𝐺𝐽 ) ) ⟩ )
25 23 24 eqtr4di ( ( 𝜑𝐽 ∈ ℕ ) → ( (,) ‘ ( 𝐺𝐽 ) ) = ( ( 1st ‘ ( 𝐺𝐽 ) ) (,) ( 2nd ‘ ( 𝐺𝐽 ) ) ) )
26 25 adantr ( ( ( 𝜑𝐽 ∈ ℕ ) ∧ 𝑧 ∈ ℕ ) → ( (,) ‘ ( 𝐺𝐽 ) ) = ( ( 1st ‘ ( 𝐺𝐽 ) ) (,) ( 2nd ‘ ( 𝐺𝐽 ) ) ) )
27 18 26 ineq12d ( ( ( 𝜑𝐽 ∈ ℕ ) ∧ 𝑧 ∈ ℕ ) → ( ( (,) ‘ ( 𝐹𝑧 ) ) ∩ ( (,) ‘ ( 𝐺𝐽 ) ) ) = ( ( ( 1st ‘ ( 𝐹𝑧 ) ) (,) ( 2nd ‘ ( 𝐹𝑧 ) ) ) ∩ ( ( 1st ‘ ( 𝐺𝐽 ) ) (,) ( 2nd ‘ ( 𝐺𝐽 ) ) ) ) )
28 ovolfcl ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝑧 ∈ ℕ ) → ( ( 1st ‘ ( 𝐹𝑧 ) ) ∈ ℝ ∧ ( 2nd ‘ ( 𝐹𝑧 ) ) ∈ ℝ ∧ ( 1st ‘ ( 𝐹𝑧 ) ) ≤ ( 2nd ‘ ( 𝐹𝑧 ) ) ) )
29 11 28 sylan ( ( ( 𝜑𝐽 ∈ ℕ ) ∧ 𝑧 ∈ ℕ ) → ( ( 1st ‘ ( 𝐹𝑧 ) ) ∈ ℝ ∧ ( 2nd ‘ ( 𝐹𝑧 ) ) ∈ ℝ ∧ ( 1st ‘ ( 𝐹𝑧 ) ) ≤ ( 2nd ‘ ( 𝐹𝑧 ) ) ) )
30 29 simp1d ( ( ( 𝜑𝐽 ∈ ℕ ) ∧ 𝑧 ∈ ℕ ) → ( 1st ‘ ( 𝐹𝑧 ) ) ∈ ℝ )
31 30 rexrd ( ( ( 𝜑𝐽 ∈ ℕ ) ∧ 𝑧 ∈ ℕ ) → ( 1st ‘ ( 𝐹𝑧 ) ) ∈ ℝ* )
32 29 simp2d ( ( ( 𝜑𝐽 ∈ ℕ ) ∧ 𝑧 ∈ ℕ ) → ( 2nd ‘ ( 𝐹𝑧 ) ) ∈ ℝ )
33 32 rexrd ( ( ( 𝜑𝐽 ∈ ℕ ) ∧ 𝑧 ∈ ℕ ) → ( 2nd ‘ ( 𝐹𝑧 ) ) ∈ ℝ* )
34 ovolfcl ( ( 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝐽 ∈ ℕ ) → ( ( 1st ‘ ( 𝐺𝐽 ) ) ∈ ℝ ∧ ( 2nd ‘ ( 𝐺𝐽 ) ) ∈ ℝ ∧ ( 1st ‘ ( 𝐺𝐽 ) ) ≤ ( 2nd ‘ ( 𝐺𝐽 ) ) ) )
35 7 34 sylan ( ( 𝜑𝐽 ∈ ℕ ) → ( ( 1st ‘ ( 𝐺𝐽 ) ) ∈ ℝ ∧ ( 2nd ‘ ( 𝐺𝐽 ) ) ∈ ℝ ∧ ( 1st ‘ ( 𝐺𝐽 ) ) ≤ ( 2nd ‘ ( 𝐺𝐽 ) ) ) )
36 35 simp1d ( ( 𝜑𝐽 ∈ ℕ ) → ( 1st ‘ ( 𝐺𝐽 ) ) ∈ ℝ )
37 36 rexrd ( ( 𝜑𝐽 ∈ ℕ ) → ( 1st ‘ ( 𝐺𝐽 ) ) ∈ ℝ* )
38 37 adantr ( ( ( 𝜑𝐽 ∈ ℕ ) ∧ 𝑧 ∈ ℕ ) → ( 1st ‘ ( 𝐺𝐽 ) ) ∈ ℝ* )
39 35 simp2d ( ( 𝜑𝐽 ∈ ℕ ) → ( 2nd ‘ ( 𝐺𝐽 ) ) ∈ ℝ )
40 39 rexrd ( ( 𝜑𝐽 ∈ ℕ ) → ( 2nd ‘ ( 𝐺𝐽 ) ) ∈ ℝ* )
41 40 adantr ( ( ( 𝜑𝐽 ∈ ℕ ) ∧ 𝑧 ∈ ℕ ) → ( 2nd ‘ ( 𝐺𝐽 ) ) ∈ ℝ* )
42 iooin ( ( ( ( 1st ‘ ( 𝐹𝑧 ) ) ∈ ℝ* ∧ ( 2nd ‘ ( 𝐹𝑧 ) ) ∈ ℝ* ) ∧ ( ( 1st ‘ ( 𝐺𝐽 ) ) ∈ ℝ* ∧ ( 2nd ‘ ( 𝐺𝐽 ) ) ∈ ℝ* ) ) → ( ( ( 1st ‘ ( 𝐹𝑧 ) ) (,) ( 2nd ‘ ( 𝐹𝑧 ) ) ) ∩ ( ( 1st ‘ ( 𝐺𝐽 ) ) (,) ( 2nd ‘ ( 𝐺𝐽 ) ) ) ) = ( if ( ( 1st ‘ ( 𝐹𝑧 ) ) ≤ ( 1st ‘ ( 𝐺𝐽 ) ) , ( 1st ‘ ( 𝐺𝐽 ) ) , ( 1st ‘ ( 𝐹𝑧 ) ) ) (,) if ( ( 2nd ‘ ( 𝐹𝑧 ) ) ≤ ( 2nd ‘ ( 𝐺𝐽 ) ) , ( 2nd ‘ ( 𝐹𝑧 ) ) , ( 2nd ‘ ( 𝐺𝐽 ) ) ) ) )
43 31 33 38 41 42 syl22anc ( ( ( 𝜑𝐽 ∈ ℕ ) ∧ 𝑧 ∈ ℕ ) → ( ( ( 1st ‘ ( 𝐹𝑧 ) ) (,) ( 2nd ‘ ( 𝐹𝑧 ) ) ) ∩ ( ( 1st ‘ ( 𝐺𝐽 ) ) (,) ( 2nd ‘ ( 𝐺𝐽 ) ) ) ) = ( if ( ( 1st ‘ ( 𝐹𝑧 ) ) ≤ ( 1st ‘ ( 𝐺𝐽 ) ) , ( 1st ‘ ( 𝐺𝐽 ) ) , ( 1st ‘ ( 𝐹𝑧 ) ) ) (,) if ( ( 2nd ‘ ( 𝐹𝑧 ) ) ≤ ( 2nd ‘ ( 𝐺𝐽 ) ) , ( 2nd ‘ ( 𝐹𝑧 ) ) , ( 2nd ‘ ( 𝐺𝐽 ) ) ) ) )
44 27 43 eqtrd ( ( ( 𝜑𝐽 ∈ ℕ ) ∧ 𝑧 ∈ ℕ ) → ( ( (,) ‘ ( 𝐹𝑧 ) ) ∩ ( (,) ‘ ( 𝐺𝐽 ) ) ) = ( if ( ( 1st ‘ ( 𝐹𝑧 ) ) ≤ ( 1st ‘ ( 𝐺𝐽 ) ) , ( 1st ‘ ( 𝐺𝐽 ) ) , ( 1st ‘ ( 𝐹𝑧 ) ) ) (,) if ( ( 2nd ‘ ( 𝐹𝑧 ) ) ≤ ( 2nd ‘ ( 𝐺𝐽 ) ) , ( 2nd ‘ ( 𝐹𝑧 ) ) , ( 2nd ‘ ( 𝐺𝐽 ) ) ) ) )
45 ioorebas ( if ( ( 1st ‘ ( 𝐹𝑧 ) ) ≤ ( 1st ‘ ( 𝐺𝐽 ) ) , ( 1st ‘ ( 𝐺𝐽 ) ) , ( 1st ‘ ( 𝐹𝑧 ) ) ) (,) if ( ( 2nd ‘ ( 𝐹𝑧 ) ) ≤ ( 2nd ‘ ( 𝐺𝐽 ) ) , ( 2nd ‘ ( 𝐹𝑧 ) ) , ( 2nd ‘ ( 𝐺𝐽 ) ) ) ) ∈ ran (,)
46 44 45 eqeltrdi ( ( ( 𝜑𝐽 ∈ ℕ ) ∧ 𝑧 ∈ ℕ ) → ( ( (,) ‘ ( 𝐹𝑧 ) ) ∩ ( (,) ‘ ( 𝐺𝐽 ) ) ) ∈ ran (,) )