| Step |
Hyp |
Ref |
Expression |
| 1 |
|
uniioombl.1 |
⊢ ( 𝜑 → 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 2 |
|
uniioombl.2 |
⊢ ( 𝜑 → Disj 𝑥 ∈ ℕ ( (,) ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
| 3 |
|
uniioombl.3 |
⊢ 𝑆 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐹 ) ) |
| 4 |
|
uniioombl.a |
⊢ 𝐴 = ∪ ran ( (,) ∘ 𝐹 ) |
| 5 |
|
uniioombl.e |
⊢ ( 𝜑 → ( vol* ‘ 𝐸 ) ∈ ℝ ) |
| 6 |
|
uniioombl.c |
⊢ ( 𝜑 → 𝐶 ∈ ℝ+ ) |
| 7 |
|
uniioombl.g |
⊢ ( 𝜑 → 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 8 |
|
uniioombl.s |
⊢ ( 𝜑 → 𝐸 ⊆ ∪ ran ( (,) ∘ 𝐺 ) ) |
| 9 |
|
uniioombl.t |
⊢ 𝑇 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) |
| 10 |
|
uniioombl.v |
⊢ ( 𝜑 → sup ( ran 𝑇 , ℝ* , < ) ≤ ( ( vol* ‘ 𝐸 ) + 𝐶 ) ) |
| 11 |
|
uniioombl.m |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
| 12 |
|
uniioombl.m2 |
⊢ ( 𝜑 → ( abs ‘ ( ( 𝑇 ‘ 𝑀 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 ) |
| 13 |
|
uniioombl.k |
⊢ 𝐾 = ∪ ( ( (,) ∘ 𝐺 ) “ ( 1 ... 𝑀 ) ) |
| 14 |
|
inss1 |
⊢ ( 𝐸 ∩ 𝐴 ) ⊆ 𝐸 |
| 15 |
14
|
a1i |
⊢ ( 𝜑 → ( 𝐸 ∩ 𝐴 ) ⊆ 𝐸 ) |
| 16 |
7
|
uniiccdif |
⊢ ( 𝜑 → ( ∪ ran ( (,) ∘ 𝐺 ) ⊆ ∪ ran ( [,] ∘ 𝐺 ) ∧ ( vol* ‘ ( ∪ ran ( [,] ∘ 𝐺 ) ∖ ∪ ran ( (,) ∘ 𝐺 ) ) ) = 0 ) ) |
| 17 |
16
|
simpld |
⊢ ( 𝜑 → ∪ ran ( (,) ∘ 𝐺 ) ⊆ ∪ ran ( [,] ∘ 𝐺 ) ) |
| 18 |
|
ovolficcss |
⊢ ( 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → ∪ ran ( [,] ∘ 𝐺 ) ⊆ ℝ ) |
| 19 |
7 18
|
syl |
⊢ ( 𝜑 → ∪ ran ( [,] ∘ 𝐺 ) ⊆ ℝ ) |
| 20 |
17 19
|
sstrd |
⊢ ( 𝜑 → ∪ ran ( (,) ∘ 𝐺 ) ⊆ ℝ ) |
| 21 |
8 20
|
sstrd |
⊢ ( 𝜑 → 𝐸 ⊆ ℝ ) |
| 22 |
|
ovolsscl |
⊢ ( ( ( 𝐸 ∩ 𝐴 ) ⊆ 𝐸 ∧ 𝐸 ⊆ ℝ ∧ ( vol* ‘ 𝐸 ) ∈ ℝ ) → ( vol* ‘ ( 𝐸 ∩ 𝐴 ) ) ∈ ℝ ) |
| 23 |
15 21 5 22
|
syl3anc |
⊢ ( 𝜑 → ( vol* ‘ ( 𝐸 ∩ 𝐴 ) ) ∈ ℝ ) |
| 24 |
|
difssd |
⊢ ( 𝜑 → ( 𝐸 ∖ 𝐴 ) ⊆ 𝐸 ) |
| 25 |
|
ovolsscl |
⊢ ( ( ( 𝐸 ∖ 𝐴 ) ⊆ 𝐸 ∧ 𝐸 ⊆ ℝ ∧ ( vol* ‘ 𝐸 ) ∈ ℝ ) → ( vol* ‘ ( 𝐸 ∖ 𝐴 ) ) ∈ ℝ ) |
| 26 |
24 21 5 25
|
syl3anc |
⊢ ( 𝜑 → ( vol* ‘ ( 𝐸 ∖ 𝐴 ) ) ∈ ℝ ) |
| 27 |
|
inss1 |
⊢ ( 𝐾 ∩ 𝐴 ) ⊆ 𝐾 |
| 28 |
27
|
a1i |
⊢ ( 𝜑 → ( 𝐾 ∩ 𝐴 ) ⊆ 𝐾 ) |
| 29 |
1 2 3 4 5 6 7 8 9 10 11 12 13
|
uniioombllem3a |
⊢ ( 𝜑 → ( 𝐾 = ∪ 𝑗 ∈ ( 1 ... 𝑀 ) ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∧ ( vol* ‘ 𝐾 ) ∈ ℝ ) ) |
| 30 |
29
|
simpld |
⊢ ( 𝜑 → 𝐾 = ∪ 𝑗 ∈ ( 1 ... 𝑀 ) ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) |
| 31 |
|
inss2 |
⊢ ( ≤ ∩ ( ℝ × ℝ ) ) ⊆ ( ℝ × ℝ ) |
| 32 |
|
elfznn |
⊢ ( 𝑗 ∈ ( 1 ... 𝑀 ) → 𝑗 ∈ ℕ ) |
| 33 |
|
ffvelcdm |
⊢ ( ( 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝑗 ∈ ℕ ) → ( 𝐺 ‘ 𝑗 ) ∈ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 34 |
7 32 33
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( 𝐺 ‘ 𝑗 ) ∈ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 35 |
31 34
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( 𝐺 ‘ 𝑗 ) ∈ ( ℝ × ℝ ) ) |
| 36 |
|
1st2nd2 |
⊢ ( ( 𝐺 ‘ 𝑗 ) ∈ ( ℝ × ℝ ) → ( 𝐺 ‘ 𝑗 ) = 〈 ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) , ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) 〉 ) |
| 37 |
35 36
|
syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( 𝐺 ‘ 𝑗 ) = 〈 ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) , ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) 〉 ) |
| 38 |
37
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) = ( (,) ‘ 〈 ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) , ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) 〉 ) ) |
| 39 |
|
df-ov |
⊢ ( ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) (,) ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) ) = ( (,) ‘ 〈 ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) , ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) 〉 ) |
| 40 |
38 39
|
eqtr4di |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) = ( ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) (,) ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) |
| 41 |
|
ioossre |
⊢ ( ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) (,) ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) ) ⊆ ℝ |
| 42 |
40 41
|
eqsstrdi |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ⊆ ℝ ) |
| 43 |
42
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑗 ∈ ( 1 ... 𝑀 ) ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ⊆ ℝ ) |
| 44 |
|
iunss |
⊢ ( ∪ 𝑗 ∈ ( 1 ... 𝑀 ) ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ⊆ ℝ ↔ ∀ 𝑗 ∈ ( 1 ... 𝑀 ) ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ⊆ ℝ ) |
| 45 |
43 44
|
sylibr |
⊢ ( 𝜑 → ∪ 𝑗 ∈ ( 1 ... 𝑀 ) ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ⊆ ℝ ) |
| 46 |
30 45
|
eqsstrd |
⊢ ( 𝜑 → 𝐾 ⊆ ℝ ) |
| 47 |
29
|
simprd |
⊢ ( 𝜑 → ( vol* ‘ 𝐾 ) ∈ ℝ ) |
| 48 |
|
ovolsscl |
⊢ ( ( ( 𝐾 ∩ 𝐴 ) ⊆ 𝐾 ∧ 𝐾 ⊆ ℝ ∧ ( vol* ‘ 𝐾 ) ∈ ℝ ) → ( vol* ‘ ( 𝐾 ∩ 𝐴 ) ) ∈ ℝ ) |
| 49 |
28 46 47 48
|
syl3anc |
⊢ ( 𝜑 → ( vol* ‘ ( 𝐾 ∩ 𝐴 ) ) ∈ ℝ ) |
| 50 |
6
|
rpred |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
| 51 |
49 50
|
readdcld |
⊢ ( 𝜑 → ( ( vol* ‘ ( 𝐾 ∩ 𝐴 ) ) + 𝐶 ) ∈ ℝ ) |
| 52 |
|
difssd |
⊢ ( 𝜑 → ( 𝐾 ∖ 𝐴 ) ⊆ 𝐾 ) |
| 53 |
|
ovolsscl |
⊢ ( ( ( 𝐾 ∖ 𝐴 ) ⊆ 𝐾 ∧ 𝐾 ⊆ ℝ ∧ ( vol* ‘ 𝐾 ) ∈ ℝ ) → ( vol* ‘ ( 𝐾 ∖ 𝐴 ) ) ∈ ℝ ) |
| 54 |
52 46 47 53
|
syl3anc |
⊢ ( 𝜑 → ( vol* ‘ ( 𝐾 ∖ 𝐴 ) ) ∈ ℝ ) |
| 55 |
54 50
|
readdcld |
⊢ ( 𝜑 → ( ( vol* ‘ ( 𝐾 ∖ 𝐴 ) ) + 𝐶 ) ∈ ℝ ) |
| 56 |
|
ssun2 |
⊢ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ⊆ ( 𝐾 ∪ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) |
| 57 |
|
ioof |
⊢ (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ |
| 58 |
|
rexpssxrxp |
⊢ ( ℝ × ℝ ) ⊆ ( ℝ* × ℝ* ) |
| 59 |
31 58
|
sstri |
⊢ ( ≤ ∩ ( ℝ × ℝ ) ) ⊆ ( ℝ* × ℝ* ) |
| 60 |
|
fss |
⊢ ( ( 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ ( ≤ ∩ ( ℝ × ℝ ) ) ⊆ ( ℝ* × ℝ* ) ) → 𝐺 : ℕ ⟶ ( ℝ* × ℝ* ) ) |
| 61 |
7 59 60
|
sylancl |
⊢ ( 𝜑 → 𝐺 : ℕ ⟶ ( ℝ* × ℝ* ) ) |
| 62 |
|
fco |
⊢ ( ( (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ ∧ 𝐺 : ℕ ⟶ ( ℝ* × ℝ* ) ) → ( (,) ∘ 𝐺 ) : ℕ ⟶ 𝒫 ℝ ) |
| 63 |
57 61 62
|
sylancr |
⊢ ( 𝜑 → ( (,) ∘ 𝐺 ) : ℕ ⟶ 𝒫 ℝ ) |
| 64 |
63
|
ffnd |
⊢ ( 𝜑 → ( (,) ∘ 𝐺 ) Fn ℕ ) |
| 65 |
|
fnima |
⊢ ( ( (,) ∘ 𝐺 ) Fn ℕ → ( ( (,) ∘ 𝐺 ) “ ℕ ) = ran ( (,) ∘ 𝐺 ) ) |
| 66 |
64 65
|
syl |
⊢ ( 𝜑 → ( ( (,) ∘ 𝐺 ) “ ℕ ) = ran ( (,) ∘ 𝐺 ) ) |
| 67 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 68 |
11
|
peano2nnd |
⊢ ( 𝜑 → ( 𝑀 + 1 ) ∈ ℕ ) |
| 69 |
68 67
|
eleqtrdi |
⊢ ( 𝜑 → ( 𝑀 + 1 ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 70 |
|
uzsplit |
⊢ ( ( 𝑀 + 1 ) ∈ ( ℤ≥ ‘ 1 ) → ( ℤ≥ ‘ 1 ) = ( ( 1 ... ( ( 𝑀 + 1 ) − 1 ) ) ∪ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) |
| 71 |
69 70
|
syl |
⊢ ( 𝜑 → ( ℤ≥ ‘ 1 ) = ( ( 1 ... ( ( 𝑀 + 1 ) − 1 ) ) ∪ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) |
| 72 |
67 71
|
eqtrid |
⊢ ( 𝜑 → ℕ = ( ( 1 ... ( ( 𝑀 + 1 ) − 1 ) ) ∪ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) |
| 73 |
11
|
nncnd |
⊢ ( 𝜑 → 𝑀 ∈ ℂ ) |
| 74 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 75 |
|
pncan |
⊢ ( ( 𝑀 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑀 + 1 ) − 1 ) = 𝑀 ) |
| 76 |
73 74 75
|
sylancl |
⊢ ( 𝜑 → ( ( 𝑀 + 1 ) − 1 ) = 𝑀 ) |
| 77 |
76
|
oveq2d |
⊢ ( 𝜑 → ( 1 ... ( ( 𝑀 + 1 ) − 1 ) ) = ( 1 ... 𝑀 ) ) |
| 78 |
77
|
uneq1d |
⊢ ( 𝜑 → ( ( 1 ... ( ( 𝑀 + 1 ) − 1 ) ) ∪ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) = ( ( 1 ... 𝑀 ) ∪ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) |
| 79 |
72 78
|
eqtrd |
⊢ ( 𝜑 → ℕ = ( ( 1 ... 𝑀 ) ∪ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) |
| 80 |
79
|
imaeq2d |
⊢ ( 𝜑 → ( ( (,) ∘ 𝐺 ) “ ℕ ) = ( ( (,) ∘ 𝐺 ) “ ( ( 1 ... 𝑀 ) ∪ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ) |
| 81 |
66 80
|
eqtr3d |
⊢ ( 𝜑 → ran ( (,) ∘ 𝐺 ) = ( ( (,) ∘ 𝐺 ) “ ( ( 1 ... 𝑀 ) ∪ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ) |
| 82 |
|
imaundi |
⊢ ( ( (,) ∘ 𝐺 ) “ ( ( 1 ... 𝑀 ) ∪ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) = ( ( ( (,) ∘ 𝐺 ) “ ( 1 ... 𝑀 ) ) ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) |
| 83 |
81 82
|
eqtrdi |
⊢ ( 𝜑 → ran ( (,) ∘ 𝐺 ) = ( ( ( (,) ∘ 𝐺 ) “ ( 1 ... 𝑀 ) ) ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ) |
| 84 |
83
|
unieqd |
⊢ ( 𝜑 → ∪ ran ( (,) ∘ 𝐺 ) = ∪ ( ( ( (,) ∘ 𝐺 ) “ ( 1 ... 𝑀 ) ) ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ) |
| 85 |
|
uniun |
⊢ ∪ ( ( ( (,) ∘ 𝐺 ) “ ( 1 ... 𝑀 ) ) ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) = ( ∪ ( ( (,) ∘ 𝐺 ) “ ( 1 ... 𝑀 ) ) ∪ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) |
| 86 |
84 85
|
eqtrdi |
⊢ ( 𝜑 → ∪ ran ( (,) ∘ 𝐺 ) = ( ∪ ( ( (,) ∘ 𝐺 ) “ ( 1 ... 𝑀 ) ) ∪ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ) |
| 87 |
13
|
uneq1i |
⊢ ( 𝐾 ∪ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) = ( ∪ ( ( (,) ∘ 𝐺 ) “ ( 1 ... 𝑀 ) ) ∪ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) |
| 88 |
86 87
|
eqtr4di |
⊢ ( 𝜑 → ∪ ran ( (,) ∘ 𝐺 ) = ( 𝐾 ∪ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ) |
| 89 |
56 88
|
sseqtrrid |
⊢ ( 𝜑 → ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ⊆ ∪ ran ( (,) ∘ 𝐺 ) ) |
| 90 |
1 2 3 4 5 6 7 8 9 10
|
uniioombllem1 |
⊢ ( 𝜑 → sup ( ran 𝑇 , ℝ* , < ) ∈ ℝ ) |
| 91 |
|
ssid |
⊢ ∪ ran ( (,) ∘ 𝐺 ) ⊆ ∪ ran ( (,) ∘ 𝐺 ) |
| 92 |
9
|
ovollb |
⊢ ( ( 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ ∪ ran ( (,) ∘ 𝐺 ) ⊆ ∪ ran ( (,) ∘ 𝐺 ) ) → ( vol* ‘ ∪ ran ( (,) ∘ 𝐺 ) ) ≤ sup ( ran 𝑇 , ℝ* , < ) ) |
| 93 |
7 91 92
|
sylancl |
⊢ ( 𝜑 → ( vol* ‘ ∪ ran ( (,) ∘ 𝐺 ) ) ≤ sup ( ran 𝑇 , ℝ* , < ) ) |
| 94 |
|
ovollecl |
⊢ ( ( ∪ ran ( (,) ∘ 𝐺 ) ⊆ ℝ ∧ sup ( ran 𝑇 , ℝ* , < ) ∈ ℝ ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝐺 ) ) ≤ sup ( ran 𝑇 , ℝ* , < ) ) → ( vol* ‘ ∪ ran ( (,) ∘ 𝐺 ) ) ∈ ℝ ) |
| 95 |
20 90 93 94
|
syl3anc |
⊢ ( 𝜑 → ( vol* ‘ ∪ ran ( (,) ∘ 𝐺 ) ) ∈ ℝ ) |
| 96 |
|
ovolsscl |
⊢ ( ( ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ⊆ ∪ ran ( (,) ∘ 𝐺 ) ∧ ∪ ran ( (,) ∘ 𝐺 ) ⊆ ℝ ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝐺 ) ) ∈ ℝ ) → ( vol* ‘ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ∈ ℝ ) |
| 97 |
89 20 95 96
|
syl3anc |
⊢ ( 𝜑 → ( vol* ‘ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ∈ ℝ ) |
| 98 |
49 97
|
readdcld |
⊢ ( 𝜑 → ( ( vol* ‘ ( 𝐾 ∩ 𝐴 ) ) + ( vol* ‘ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ) ∈ ℝ ) |
| 99 |
|
unss1 |
⊢ ( ( 𝐾 ∩ 𝐴 ) ⊆ 𝐾 → ( ( 𝐾 ∩ 𝐴 ) ∪ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ⊆ ( 𝐾 ∪ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ) |
| 100 |
27 99
|
ax-mp |
⊢ ( ( 𝐾 ∩ 𝐴 ) ∪ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ⊆ ( 𝐾 ∪ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) |
| 101 |
100 88
|
sseqtrrid |
⊢ ( 𝜑 → ( ( 𝐾 ∩ 𝐴 ) ∪ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ⊆ ∪ ran ( (,) ∘ 𝐺 ) ) |
| 102 |
|
ovolsscl |
⊢ ( ( ( ( 𝐾 ∩ 𝐴 ) ∪ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ⊆ ∪ ran ( (,) ∘ 𝐺 ) ∧ ∪ ran ( (,) ∘ 𝐺 ) ⊆ ℝ ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝐺 ) ) ∈ ℝ ) → ( vol* ‘ ( ( 𝐾 ∩ 𝐴 ) ∪ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ) ∈ ℝ ) |
| 103 |
101 20 95 102
|
syl3anc |
⊢ ( 𝜑 → ( vol* ‘ ( ( 𝐾 ∩ 𝐴 ) ∪ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ) ∈ ℝ ) |
| 104 |
8 88
|
sseqtrd |
⊢ ( 𝜑 → 𝐸 ⊆ ( 𝐾 ∪ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ) |
| 105 |
104
|
ssrind |
⊢ ( 𝜑 → ( 𝐸 ∩ 𝐴 ) ⊆ ( ( 𝐾 ∪ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ∩ 𝐴 ) ) |
| 106 |
|
indir |
⊢ ( ( 𝐾 ∪ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ∩ 𝐴 ) = ( ( 𝐾 ∩ 𝐴 ) ∪ ( ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ∩ 𝐴 ) ) |
| 107 |
|
inss1 |
⊢ ( ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ∩ 𝐴 ) ⊆ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) |
| 108 |
|
unss2 |
⊢ ( ( ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ∩ 𝐴 ) ⊆ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → ( ( 𝐾 ∩ 𝐴 ) ∪ ( ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ∩ 𝐴 ) ) ⊆ ( ( 𝐾 ∩ 𝐴 ) ∪ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ) |
| 109 |
107 108
|
ax-mp |
⊢ ( ( 𝐾 ∩ 𝐴 ) ∪ ( ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ∩ 𝐴 ) ) ⊆ ( ( 𝐾 ∩ 𝐴 ) ∪ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) |
| 110 |
106 109
|
eqsstri |
⊢ ( ( 𝐾 ∪ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ∩ 𝐴 ) ⊆ ( ( 𝐾 ∩ 𝐴 ) ∪ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) |
| 111 |
105 110
|
sstrdi |
⊢ ( 𝜑 → ( 𝐸 ∩ 𝐴 ) ⊆ ( ( 𝐾 ∩ 𝐴 ) ∪ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ) |
| 112 |
101 20
|
sstrd |
⊢ ( 𝜑 → ( ( 𝐾 ∩ 𝐴 ) ∪ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ⊆ ℝ ) |
| 113 |
|
ovolss |
⊢ ( ( ( 𝐸 ∩ 𝐴 ) ⊆ ( ( 𝐾 ∩ 𝐴 ) ∪ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ∧ ( ( 𝐾 ∩ 𝐴 ) ∪ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ⊆ ℝ ) → ( vol* ‘ ( 𝐸 ∩ 𝐴 ) ) ≤ ( vol* ‘ ( ( 𝐾 ∩ 𝐴 ) ∪ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ) ) |
| 114 |
111 112 113
|
syl2anc |
⊢ ( 𝜑 → ( vol* ‘ ( 𝐸 ∩ 𝐴 ) ) ≤ ( vol* ‘ ( ( 𝐾 ∩ 𝐴 ) ∪ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ) ) |
| 115 |
28 46
|
sstrd |
⊢ ( 𝜑 → ( 𝐾 ∩ 𝐴 ) ⊆ ℝ ) |
| 116 |
89 20
|
sstrd |
⊢ ( 𝜑 → ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ⊆ ℝ ) |
| 117 |
|
ovolun |
⊢ ( ( ( ( 𝐾 ∩ 𝐴 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝐾 ∩ 𝐴 ) ) ∈ ℝ ) ∧ ( ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ⊆ ℝ ∧ ( vol* ‘ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ∈ ℝ ) ) → ( vol* ‘ ( ( 𝐾 ∩ 𝐴 ) ∪ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ) ≤ ( ( vol* ‘ ( 𝐾 ∩ 𝐴 ) ) + ( vol* ‘ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ) ) |
| 118 |
115 49 116 97 117
|
syl22anc |
⊢ ( 𝜑 → ( vol* ‘ ( ( 𝐾 ∩ 𝐴 ) ∪ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ) ≤ ( ( vol* ‘ ( 𝐾 ∩ 𝐴 ) ) + ( vol* ‘ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ) ) |
| 119 |
23 103 98 114 118
|
letrd |
⊢ ( 𝜑 → ( vol* ‘ ( 𝐸 ∩ 𝐴 ) ) ≤ ( ( vol* ‘ ( 𝐾 ∩ 𝐴 ) ) + ( vol* ‘ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ) ) |
| 120 |
|
rge0ssre |
⊢ ( 0 [,) +∞ ) ⊆ ℝ |
| 121 |
|
eqid |
⊢ ( ( abs ∘ − ) ∘ 𝐺 ) = ( ( abs ∘ − ) ∘ 𝐺 ) |
| 122 |
121 9
|
ovolsf |
⊢ ( 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → 𝑇 : ℕ ⟶ ( 0 [,) +∞ ) ) |
| 123 |
7 122
|
syl |
⊢ ( 𝜑 → 𝑇 : ℕ ⟶ ( 0 [,) +∞ ) ) |
| 124 |
123 11
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝑇 ‘ 𝑀 ) ∈ ( 0 [,) +∞ ) ) |
| 125 |
120 124
|
sselid |
⊢ ( 𝜑 → ( 𝑇 ‘ 𝑀 ) ∈ ℝ ) |
| 126 |
90 125
|
resubcld |
⊢ ( 𝜑 → ( sup ( ran 𝑇 , ℝ* , < ) − ( 𝑇 ‘ 𝑀 ) ) ∈ ℝ ) |
| 127 |
97
|
rexrd |
⊢ ( 𝜑 → ( vol* ‘ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ∈ ℝ* ) |
| 128 |
|
id |
⊢ ( 𝑧 ∈ ℕ → 𝑧 ∈ ℕ ) |
| 129 |
|
nnaddcl |
⊢ ( ( 𝑧 ∈ ℕ ∧ 𝑀 ∈ ℕ ) → ( 𝑧 + 𝑀 ) ∈ ℕ ) |
| 130 |
128 11 129
|
syl2anr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℕ ) → ( 𝑧 + 𝑀 ) ∈ ℕ ) |
| 131 |
7
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ ( 𝑧 + 𝑀 ) ∈ ℕ ) → ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ∈ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 132 |
130 131
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℕ ) → ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ∈ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 133 |
132
|
fmpttd |
⊢ ( 𝜑 → ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 134 |
|
eqid |
⊢ ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) = ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) |
| 135 |
|
eqid |
⊢ seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ) = seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ) |
| 136 |
134 135
|
ovolsf |
⊢ ( ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ) : ℕ ⟶ ( 0 [,) +∞ ) ) |
| 137 |
133 136
|
syl |
⊢ ( 𝜑 → seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ) : ℕ ⟶ ( 0 [,) +∞ ) ) |
| 138 |
137
|
frnd |
⊢ ( 𝜑 → ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ) ⊆ ( 0 [,) +∞ ) ) |
| 139 |
|
icossxr |
⊢ ( 0 [,) +∞ ) ⊆ ℝ* |
| 140 |
138 139
|
sstrdi |
⊢ ( 𝜑 → ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ) ⊆ ℝ* ) |
| 141 |
|
supxrcl |
⊢ ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ) ⊆ ℝ* → sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ) , ℝ* , < ) ∈ ℝ* ) |
| 142 |
140 141
|
syl |
⊢ ( 𝜑 → sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ) , ℝ* , < ) ∈ ℝ* ) |
| 143 |
126
|
rexrd |
⊢ ( 𝜑 → ( sup ( ran 𝑇 , ℝ* , < ) − ( 𝑇 ‘ 𝑀 ) ) ∈ ℝ* ) |
| 144 |
|
1zzd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → 1 ∈ ℤ ) |
| 145 |
11
|
nnzd |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 146 |
145
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → 𝑀 ∈ ℤ ) |
| 147 |
|
addcom |
⊢ ( ( 𝑀 ∈ ℂ ∧ 1 ∈ ℂ ) → ( 𝑀 + 1 ) = ( 1 + 𝑀 ) ) |
| 148 |
73 74 147
|
sylancl |
⊢ ( 𝜑 → ( 𝑀 + 1 ) = ( 1 + 𝑀 ) ) |
| 149 |
148
|
fveq2d |
⊢ ( 𝜑 → ( ℤ≥ ‘ ( 𝑀 + 1 ) ) = ( ℤ≥ ‘ ( 1 + 𝑀 ) ) ) |
| 150 |
149
|
eleq2d |
⊢ ( 𝜑 → ( 𝑥 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ↔ 𝑥 ∈ ( ℤ≥ ‘ ( 1 + 𝑀 ) ) ) ) |
| 151 |
150
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → 𝑥 ∈ ( ℤ≥ ‘ ( 1 + 𝑀 ) ) ) |
| 152 |
|
eluzsub |
⊢ ( ( 1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑥 ∈ ( ℤ≥ ‘ ( 1 + 𝑀 ) ) ) → ( 𝑥 − 𝑀 ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 153 |
144 146 151 152
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → ( 𝑥 − 𝑀 ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 154 |
153 67
|
eleqtrrdi |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → ( 𝑥 − 𝑀 ) ∈ ℕ ) |
| 155 |
|
eluzelz |
⊢ ( 𝑥 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) → 𝑥 ∈ ℤ ) |
| 156 |
155
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → 𝑥 ∈ ℤ ) |
| 157 |
156
|
zcnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → 𝑥 ∈ ℂ ) |
| 158 |
73
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → 𝑀 ∈ ℂ ) |
| 159 |
157 158
|
npcand |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → ( ( 𝑥 − 𝑀 ) + 𝑀 ) = 𝑥 ) |
| 160 |
159
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → 𝑥 = ( ( 𝑥 − 𝑀 ) + 𝑀 ) ) |
| 161 |
|
oveq1 |
⊢ ( 𝑧 = ( 𝑥 − 𝑀 ) → ( 𝑧 + 𝑀 ) = ( ( 𝑥 − 𝑀 ) + 𝑀 ) ) |
| 162 |
161
|
rspceeqv |
⊢ ( ( ( 𝑥 − 𝑀 ) ∈ ℕ ∧ 𝑥 = ( ( 𝑥 − 𝑀 ) + 𝑀 ) ) → ∃ 𝑧 ∈ ℕ 𝑥 = ( 𝑧 + 𝑀 ) ) |
| 163 |
154 160 162
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → ∃ 𝑧 ∈ ℕ 𝑥 = ( 𝑧 + 𝑀 ) ) |
| 164 |
|
eqid |
⊢ ( 𝑧 ∈ ℕ ↦ ( 𝑧 + 𝑀 ) ) = ( 𝑧 ∈ ℕ ↦ ( 𝑧 + 𝑀 ) ) |
| 165 |
164
|
elrnmpt |
⊢ ( 𝑥 ∈ V → ( 𝑥 ∈ ran ( 𝑧 ∈ ℕ ↦ ( 𝑧 + 𝑀 ) ) ↔ ∃ 𝑧 ∈ ℕ 𝑥 = ( 𝑧 + 𝑀 ) ) ) |
| 166 |
165
|
elv |
⊢ ( 𝑥 ∈ ran ( 𝑧 ∈ ℕ ↦ ( 𝑧 + 𝑀 ) ) ↔ ∃ 𝑧 ∈ ℕ 𝑥 = ( 𝑧 + 𝑀 ) ) |
| 167 |
163 166
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → 𝑥 ∈ ran ( 𝑧 ∈ ℕ ↦ ( 𝑧 + 𝑀 ) ) ) |
| 168 |
167
|
ex |
⊢ ( 𝜑 → ( 𝑥 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) → 𝑥 ∈ ran ( 𝑧 ∈ ℕ ↦ ( 𝑧 + 𝑀 ) ) ) ) |
| 169 |
168
|
ssrdv |
⊢ ( 𝜑 → ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ⊆ ran ( 𝑧 ∈ ℕ ↦ ( 𝑧 + 𝑀 ) ) ) |
| 170 |
|
imass2 |
⊢ ( ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ⊆ ran ( 𝑧 ∈ ℕ ↦ ( 𝑧 + 𝑀 ) ) → ( 𝐺 “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ⊆ ( 𝐺 “ ran ( 𝑧 ∈ ℕ ↦ ( 𝑧 + 𝑀 ) ) ) ) |
| 171 |
169 170
|
syl |
⊢ ( 𝜑 → ( 𝐺 “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ⊆ ( 𝐺 “ ran ( 𝑧 ∈ ℕ ↦ ( 𝑧 + 𝑀 ) ) ) ) |
| 172 |
|
rnco2 |
⊢ ran ( 𝐺 ∘ ( 𝑧 ∈ ℕ ↦ ( 𝑧 + 𝑀 ) ) ) = ( 𝐺 “ ran ( 𝑧 ∈ ℕ ↦ ( 𝑧 + 𝑀 ) ) ) |
| 173 |
7 130
|
cofmpt |
⊢ ( 𝜑 → ( 𝐺 ∘ ( 𝑧 ∈ ℕ ↦ ( 𝑧 + 𝑀 ) ) ) = ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) |
| 174 |
173
|
rneqd |
⊢ ( 𝜑 → ran ( 𝐺 ∘ ( 𝑧 ∈ ℕ ↦ ( 𝑧 + 𝑀 ) ) ) = ran ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) |
| 175 |
172 174
|
eqtr3id |
⊢ ( 𝜑 → ( 𝐺 “ ran ( 𝑧 ∈ ℕ ↦ ( 𝑧 + 𝑀 ) ) ) = ran ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) |
| 176 |
171 175
|
sseqtrd |
⊢ ( 𝜑 → ( 𝐺 “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ⊆ ran ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) |
| 177 |
|
imass2 |
⊢ ( ( 𝐺 “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ⊆ ran ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) → ( (,) “ ( 𝐺 “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ⊆ ( (,) “ ran ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ) |
| 178 |
176 177
|
syl |
⊢ ( 𝜑 → ( (,) “ ( 𝐺 “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ⊆ ( (,) “ ran ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ) |
| 179 |
|
imaco |
⊢ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) = ( (,) “ ( 𝐺 “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) |
| 180 |
|
rnco2 |
⊢ ran ( (,) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) = ( (,) “ ran ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) |
| 181 |
178 179 180
|
3sstr4g |
⊢ ( 𝜑 → ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ⊆ ran ( (,) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ) |
| 182 |
181
|
unissd |
⊢ ( 𝜑 → ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ⊆ ∪ ran ( (,) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ) |
| 183 |
135
|
ovollb |
⊢ ( ( ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ⊆ ∪ ran ( (,) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ) → ( vol* ‘ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ≤ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ) , ℝ* , < ) ) |
| 184 |
133 182 183
|
syl2anc |
⊢ ( 𝜑 → ( vol* ‘ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ≤ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ) , ℝ* , < ) ) |
| 185 |
123
|
frnd |
⊢ ( 𝜑 → ran 𝑇 ⊆ ( 0 [,) +∞ ) ) |
| 186 |
185 139
|
sstrdi |
⊢ ( 𝜑 → ran 𝑇 ⊆ ℝ* ) |
| 187 |
9
|
fveq1i |
⊢ ( 𝑇 ‘ ( 𝑀 + 𝑛 ) ) = ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) ‘ ( 𝑀 + 𝑛 ) ) |
| 188 |
11
|
nnred |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
| 189 |
188
|
ltp1d |
⊢ ( 𝜑 → 𝑀 < ( 𝑀 + 1 ) ) |
| 190 |
|
fzdisj |
⊢ ( 𝑀 < ( 𝑀 + 1 ) → ( ( 1 ... 𝑀 ) ∩ ( ( 𝑀 + 1 ) ... ( 𝑀 + 𝑛 ) ) ) = ∅ ) |
| 191 |
189 190
|
syl |
⊢ ( 𝜑 → ( ( 1 ... 𝑀 ) ∩ ( ( 𝑀 + 1 ) ... ( 𝑀 + 𝑛 ) ) ) = ∅ ) |
| 192 |
191
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 1 ... 𝑀 ) ∩ ( ( 𝑀 + 1 ) ... ( 𝑀 + 𝑛 ) ) ) = ∅ ) |
| 193 |
|
nnnn0 |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℕ0 ) |
| 194 |
|
nn0addge1 |
⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑛 ∈ ℕ0 ) → 𝑀 ≤ ( 𝑀 + 𝑛 ) ) |
| 195 |
188 193 194
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑀 ≤ ( 𝑀 + 𝑛 ) ) |
| 196 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑀 ∈ ℕ ) |
| 197 |
196 67
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑀 ∈ ( ℤ≥ ‘ 1 ) ) |
| 198 |
|
nnaddcl |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑛 ∈ ℕ ) → ( 𝑀 + 𝑛 ) ∈ ℕ ) |
| 199 |
11 198
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑀 + 𝑛 ) ∈ ℕ ) |
| 200 |
199
|
nnzd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑀 + 𝑛 ) ∈ ℤ ) |
| 201 |
|
elfz5 |
⊢ ( ( 𝑀 ∈ ( ℤ≥ ‘ 1 ) ∧ ( 𝑀 + 𝑛 ) ∈ ℤ ) → ( 𝑀 ∈ ( 1 ... ( 𝑀 + 𝑛 ) ) ↔ 𝑀 ≤ ( 𝑀 + 𝑛 ) ) ) |
| 202 |
197 200 201
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑀 ∈ ( 1 ... ( 𝑀 + 𝑛 ) ) ↔ 𝑀 ≤ ( 𝑀 + 𝑛 ) ) ) |
| 203 |
195 202
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑀 ∈ ( 1 ... ( 𝑀 + 𝑛 ) ) ) |
| 204 |
|
fzsplit |
⊢ ( 𝑀 ∈ ( 1 ... ( 𝑀 + 𝑛 ) ) → ( 1 ... ( 𝑀 + 𝑛 ) ) = ( ( 1 ... 𝑀 ) ∪ ( ( 𝑀 + 1 ) ... ( 𝑀 + 𝑛 ) ) ) ) |
| 205 |
203 204
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 1 ... ( 𝑀 + 𝑛 ) ) = ( ( 1 ... 𝑀 ) ∪ ( ( 𝑀 + 1 ) ... ( 𝑀 + 𝑛 ) ) ) ) |
| 206 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 1 ... ( 𝑀 + 𝑛 ) ) ∈ Fin ) |
| 207 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 208 |
|
elfznn |
⊢ ( 𝑗 ∈ ( 1 ... ( 𝑀 + 𝑛 ) ) → 𝑗 ∈ ℕ ) |
| 209 |
|
ovolfcl |
⊢ ( ( 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝑗 ∈ ℕ ) → ( ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) ∈ ℝ ∧ ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) ∈ ℝ ∧ ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) ≤ ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) |
| 210 |
207 208 209
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑗 ∈ ( 1 ... ( 𝑀 + 𝑛 ) ) ) → ( ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) ∈ ℝ ∧ ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) ∈ ℝ ∧ ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) ≤ ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) |
| 211 |
210
|
simp2d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑗 ∈ ( 1 ... ( 𝑀 + 𝑛 ) ) ) → ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) ∈ ℝ ) |
| 212 |
210
|
simp1d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑗 ∈ ( 1 ... ( 𝑀 + 𝑛 ) ) ) → ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) ∈ ℝ ) |
| 213 |
211 212
|
resubcld |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑗 ∈ ( 1 ... ( 𝑀 + 𝑛 ) ) ) → ( ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) − ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) ) ∈ ℝ ) |
| 214 |
213
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑗 ∈ ( 1 ... ( 𝑀 + 𝑛 ) ) ) → ( ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) − ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) ) ∈ ℂ ) |
| 215 |
192 205 206 214
|
fsumsplit |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → Σ 𝑗 ∈ ( 1 ... ( 𝑀 + 𝑛 ) ) ( ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) − ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) ) = ( Σ 𝑗 ∈ ( 1 ... 𝑀 ) ( ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) − ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) ) + Σ 𝑗 ∈ ( ( 𝑀 + 1 ) ... ( 𝑀 + 𝑛 ) ) ( ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) − ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ) |
| 216 |
121
|
ovolfsval |
⊢ ( ( 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝑗 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ 𝑗 ) = ( ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) − ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) |
| 217 |
207 208 216
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑗 ∈ ( 1 ... ( 𝑀 + 𝑛 ) ) ) → ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ 𝑗 ) = ( ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) − ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) |
| 218 |
199 67
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑀 + 𝑛 ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 219 |
217 218 214
|
fsumser |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → Σ 𝑗 ∈ ( 1 ... ( 𝑀 + 𝑛 ) ) ( ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) − ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) ) = ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) ‘ ( 𝑀 + 𝑛 ) ) ) |
| 220 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 221 |
32
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → 𝑗 ∈ ℕ ) |
| 222 |
220 221 216
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ 𝑗 ) = ( ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) − ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) |
| 223 |
7 32 209
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) ∈ ℝ ∧ ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) ∈ ℝ ∧ ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) ≤ ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) |
| 224 |
223
|
simp2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) ∈ ℝ ) |
| 225 |
223
|
simp1d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) ∈ ℝ ) |
| 226 |
224 225
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) − ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) ) ∈ ℝ ) |
| 227 |
226
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) − ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) ) ∈ ℝ ) |
| 228 |
227
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) − ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) ) ∈ ℂ ) |
| 229 |
222 197 228
|
fsumser |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → Σ 𝑗 ∈ ( 1 ... 𝑀 ) ( ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) − ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) ) = ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) ‘ 𝑀 ) ) |
| 230 |
9
|
fveq1i |
⊢ ( 𝑇 ‘ 𝑀 ) = ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) ‘ 𝑀 ) |
| 231 |
229 230
|
eqtr4di |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → Σ 𝑗 ∈ ( 1 ... 𝑀 ) ( ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) − ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) ) = ( 𝑇 ‘ 𝑀 ) ) |
| 232 |
196
|
nnzd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑀 ∈ ℤ ) |
| 233 |
232
|
peano2zd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑀 + 1 ) ∈ ℤ ) |
| 234 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑗 ∈ ( ( 𝑀 + 1 ) ... ( 𝑀 + 𝑛 ) ) ) → 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 235 |
196
|
peano2nnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑀 + 1 ) ∈ ℕ ) |
| 236 |
|
elfzuz |
⊢ ( 𝑗 ∈ ( ( 𝑀 + 1 ) ... ( 𝑀 + 𝑛 ) ) → 𝑗 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) |
| 237 |
|
eluznn |
⊢ ( ( ( 𝑀 + 1 ) ∈ ℕ ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → 𝑗 ∈ ℕ ) |
| 238 |
235 236 237
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑗 ∈ ( ( 𝑀 + 1 ) ... ( 𝑀 + 𝑛 ) ) ) → 𝑗 ∈ ℕ ) |
| 239 |
234 238 209
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑗 ∈ ( ( 𝑀 + 1 ) ... ( 𝑀 + 𝑛 ) ) ) → ( ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) ∈ ℝ ∧ ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) ∈ ℝ ∧ ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) ≤ ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) |
| 240 |
239
|
simp2d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑗 ∈ ( ( 𝑀 + 1 ) ... ( 𝑀 + 𝑛 ) ) ) → ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) ∈ ℝ ) |
| 241 |
239
|
simp1d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑗 ∈ ( ( 𝑀 + 1 ) ... ( 𝑀 + 𝑛 ) ) ) → ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) ∈ ℝ ) |
| 242 |
240 241
|
resubcld |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑗 ∈ ( ( 𝑀 + 1 ) ... ( 𝑀 + 𝑛 ) ) ) → ( ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) − ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) ) ∈ ℝ ) |
| 243 |
242
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑗 ∈ ( ( 𝑀 + 1 ) ... ( 𝑀 + 𝑛 ) ) ) → ( ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) − ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) ) ∈ ℂ ) |
| 244 |
|
2fveq3 |
⊢ ( 𝑗 = ( 𝑘 + 𝑀 ) → ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) = ( 2nd ‘ ( 𝐺 ‘ ( 𝑘 + 𝑀 ) ) ) ) |
| 245 |
|
2fveq3 |
⊢ ( 𝑗 = ( 𝑘 + 𝑀 ) → ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) = ( 1st ‘ ( 𝐺 ‘ ( 𝑘 + 𝑀 ) ) ) ) |
| 246 |
244 245
|
oveq12d |
⊢ ( 𝑗 = ( 𝑘 + 𝑀 ) → ( ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) − ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) ) = ( ( 2nd ‘ ( 𝐺 ‘ ( 𝑘 + 𝑀 ) ) ) − ( 1st ‘ ( 𝐺 ‘ ( 𝑘 + 𝑀 ) ) ) ) ) |
| 247 |
232 233 200 243 246
|
fsumshftm |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → Σ 𝑗 ∈ ( ( 𝑀 + 1 ) ... ( 𝑀 + 𝑛 ) ) ( ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) − ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) ) = Σ 𝑘 ∈ ( ( ( 𝑀 + 1 ) − 𝑀 ) ... ( ( 𝑀 + 𝑛 ) − 𝑀 ) ) ( ( 2nd ‘ ( 𝐺 ‘ ( 𝑘 + 𝑀 ) ) ) − ( 1st ‘ ( 𝐺 ‘ ( 𝑘 + 𝑀 ) ) ) ) ) |
| 248 |
196
|
nncnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑀 ∈ ℂ ) |
| 249 |
|
pncan2 |
⊢ ( ( 𝑀 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑀 + 1 ) − 𝑀 ) = 1 ) |
| 250 |
248 74 249
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑀 + 1 ) − 𝑀 ) = 1 ) |
| 251 |
|
nncn |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℂ ) |
| 252 |
251
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℂ ) |
| 253 |
248 252
|
pncan2d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑀 + 𝑛 ) − 𝑀 ) = 𝑛 ) |
| 254 |
250 253
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( ( 𝑀 + 1 ) − 𝑀 ) ... ( ( 𝑀 + 𝑛 ) − 𝑀 ) ) = ( 1 ... 𝑛 ) ) |
| 255 |
254
|
sumeq1d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → Σ 𝑘 ∈ ( ( ( 𝑀 + 1 ) − 𝑀 ) ... ( ( 𝑀 + 𝑛 ) − 𝑀 ) ) ( ( 2nd ‘ ( 𝐺 ‘ ( 𝑘 + 𝑀 ) ) ) − ( 1st ‘ ( 𝐺 ‘ ( 𝑘 + 𝑀 ) ) ) ) = Σ 𝑘 ∈ ( 1 ... 𝑛 ) ( ( 2nd ‘ ( 𝐺 ‘ ( 𝑘 + 𝑀 ) ) ) − ( 1st ‘ ( 𝐺 ‘ ( 𝑘 + 𝑀 ) ) ) ) ) |
| 256 |
133
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 257 |
|
elfznn |
⊢ ( 𝑘 ∈ ( 1 ... 𝑛 ) → 𝑘 ∈ ℕ ) |
| 258 |
134
|
ovolfsval |
⊢ ( ( ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝑘 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ‘ 𝑘 ) = ( ( 2nd ‘ ( ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ‘ 𝑘 ) ) − ( 1st ‘ ( ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ‘ 𝑘 ) ) ) ) |
| 259 |
256 257 258
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ‘ 𝑘 ) = ( ( 2nd ‘ ( ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ‘ 𝑘 ) ) − ( 1st ‘ ( ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ‘ 𝑘 ) ) ) ) |
| 260 |
257
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → 𝑘 ∈ ℕ ) |
| 261 |
|
fvoveq1 |
⊢ ( 𝑧 = 𝑘 → ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) = ( 𝐺 ‘ ( 𝑘 + 𝑀 ) ) ) |
| 262 |
|
eqid |
⊢ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) = ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) |
| 263 |
|
fvex |
⊢ ( 𝐺 ‘ ( 𝑘 + 𝑀 ) ) ∈ V |
| 264 |
261 262 263
|
fvmpt |
⊢ ( 𝑘 ∈ ℕ → ( ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ‘ 𝑘 ) = ( 𝐺 ‘ ( 𝑘 + 𝑀 ) ) ) |
| 265 |
260 264
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ‘ 𝑘 ) = ( 𝐺 ‘ ( 𝑘 + 𝑀 ) ) ) |
| 266 |
265
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( 2nd ‘ ( ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ‘ 𝑘 ) ) = ( 2nd ‘ ( 𝐺 ‘ ( 𝑘 + 𝑀 ) ) ) ) |
| 267 |
265
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( 1st ‘ ( ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ‘ 𝑘 ) ) = ( 1st ‘ ( 𝐺 ‘ ( 𝑘 + 𝑀 ) ) ) ) |
| 268 |
266 267
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( ( 2nd ‘ ( ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ‘ 𝑘 ) ) − ( 1st ‘ ( ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ‘ 𝑘 ) ) ) = ( ( 2nd ‘ ( 𝐺 ‘ ( 𝑘 + 𝑀 ) ) ) − ( 1st ‘ ( 𝐺 ‘ ( 𝑘 + 𝑀 ) ) ) ) ) |
| 269 |
259 268
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ‘ 𝑘 ) = ( ( 2nd ‘ ( 𝐺 ‘ ( 𝑘 + 𝑀 ) ) ) − ( 1st ‘ ( 𝐺 ‘ ( 𝑘 + 𝑀 ) ) ) ) ) |
| 270 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℕ ) |
| 271 |
270 67
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ( ℤ≥ ‘ 1 ) ) |
| 272 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 273 |
|
nnaddcl |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ ) → ( 𝑘 + 𝑀 ) ∈ ℕ ) |
| 274 |
257 196 273
|
syl2anr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( 𝑘 + 𝑀 ) ∈ ℕ ) |
| 275 |
|
ovolfcl |
⊢ ( ( 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ ( 𝑘 + 𝑀 ) ∈ ℕ ) → ( ( 1st ‘ ( 𝐺 ‘ ( 𝑘 + 𝑀 ) ) ) ∈ ℝ ∧ ( 2nd ‘ ( 𝐺 ‘ ( 𝑘 + 𝑀 ) ) ) ∈ ℝ ∧ ( 1st ‘ ( 𝐺 ‘ ( 𝑘 + 𝑀 ) ) ) ≤ ( 2nd ‘ ( 𝐺 ‘ ( 𝑘 + 𝑀 ) ) ) ) ) |
| 276 |
272 274 275
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( ( 1st ‘ ( 𝐺 ‘ ( 𝑘 + 𝑀 ) ) ) ∈ ℝ ∧ ( 2nd ‘ ( 𝐺 ‘ ( 𝑘 + 𝑀 ) ) ) ∈ ℝ ∧ ( 1st ‘ ( 𝐺 ‘ ( 𝑘 + 𝑀 ) ) ) ≤ ( 2nd ‘ ( 𝐺 ‘ ( 𝑘 + 𝑀 ) ) ) ) ) |
| 277 |
276
|
simp2d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( 2nd ‘ ( 𝐺 ‘ ( 𝑘 + 𝑀 ) ) ) ∈ ℝ ) |
| 278 |
276
|
simp1d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( 1st ‘ ( 𝐺 ‘ ( 𝑘 + 𝑀 ) ) ) ∈ ℝ ) |
| 279 |
277 278
|
resubcld |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( ( 2nd ‘ ( 𝐺 ‘ ( 𝑘 + 𝑀 ) ) ) − ( 1st ‘ ( 𝐺 ‘ ( 𝑘 + 𝑀 ) ) ) ) ∈ ℝ ) |
| 280 |
279
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( ( 2nd ‘ ( 𝐺 ‘ ( 𝑘 + 𝑀 ) ) ) − ( 1st ‘ ( 𝐺 ‘ ( 𝑘 + 𝑀 ) ) ) ) ∈ ℂ ) |
| 281 |
269 271 280
|
fsumser |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → Σ 𝑘 ∈ ( 1 ... 𝑛 ) ( ( 2nd ‘ ( 𝐺 ‘ ( 𝑘 + 𝑀 ) ) ) − ( 1st ‘ ( 𝐺 ‘ ( 𝑘 + 𝑀 ) ) ) ) = ( seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ) ‘ 𝑛 ) ) |
| 282 |
247 255 281
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → Σ 𝑗 ∈ ( ( 𝑀 + 1 ) ... ( 𝑀 + 𝑛 ) ) ( ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) − ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) ) = ( seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ) ‘ 𝑛 ) ) |
| 283 |
231 282
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( Σ 𝑗 ∈ ( 1 ... 𝑀 ) ( ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) − ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) ) + Σ 𝑗 ∈ ( ( 𝑀 + 1 ) ... ( 𝑀 + 𝑛 ) ) ( ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) − ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) = ( ( 𝑇 ‘ 𝑀 ) + ( seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ) ‘ 𝑛 ) ) ) |
| 284 |
215 219 283
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) ‘ ( 𝑀 + 𝑛 ) ) = ( ( 𝑇 ‘ 𝑀 ) + ( seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ) ‘ 𝑛 ) ) ) |
| 285 |
187 284
|
eqtrid |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑇 ‘ ( 𝑀 + 𝑛 ) ) = ( ( 𝑇 ‘ 𝑀 ) + ( seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ) ‘ 𝑛 ) ) ) |
| 286 |
123
|
ffnd |
⊢ ( 𝜑 → 𝑇 Fn ℕ ) |
| 287 |
|
fnfvelrn |
⊢ ( ( 𝑇 Fn ℕ ∧ ( 𝑀 + 𝑛 ) ∈ ℕ ) → ( 𝑇 ‘ ( 𝑀 + 𝑛 ) ) ∈ ran 𝑇 ) |
| 288 |
286 199 287
|
syl2an2r |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑇 ‘ ( 𝑀 + 𝑛 ) ) ∈ ran 𝑇 ) |
| 289 |
285 288
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑇 ‘ 𝑀 ) + ( seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ) ‘ 𝑛 ) ) ∈ ran 𝑇 ) |
| 290 |
|
supxrub |
⊢ ( ( ran 𝑇 ⊆ ℝ* ∧ ( ( 𝑇 ‘ 𝑀 ) + ( seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ) ‘ 𝑛 ) ) ∈ ran 𝑇 ) → ( ( 𝑇 ‘ 𝑀 ) + ( seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ) ‘ 𝑛 ) ) ≤ sup ( ran 𝑇 , ℝ* , < ) ) |
| 291 |
186 289 290
|
syl2an2r |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑇 ‘ 𝑀 ) + ( seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ) ‘ 𝑛 ) ) ≤ sup ( ran 𝑇 , ℝ* , < ) ) |
| 292 |
125
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑇 ‘ 𝑀 ) ∈ ℝ ) |
| 293 |
137
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ) ‘ 𝑛 ) ∈ ( 0 [,) +∞ ) ) |
| 294 |
120 293
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ) ‘ 𝑛 ) ∈ ℝ ) |
| 295 |
90
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → sup ( ran 𝑇 , ℝ* , < ) ∈ ℝ ) |
| 296 |
292 294 295
|
leaddsub2d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( ( 𝑇 ‘ 𝑀 ) + ( seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ) ‘ 𝑛 ) ) ≤ sup ( ran 𝑇 , ℝ* , < ) ↔ ( seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ) ‘ 𝑛 ) ≤ ( sup ( ran 𝑇 , ℝ* , < ) − ( 𝑇 ‘ 𝑀 ) ) ) ) |
| 297 |
291 296
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ) ‘ 𝑛 ) ≤ ( sup ( ran 𝑇 , ℝ* , < ) − ( 𝑇 ‘ 𝑀 ) ) ) |
| 298 |
297
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑛 ∈ ℕ ( seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ) ‘ 𝑛 ) ≤ ( sup ( ran 𝑇 , ℝ* , < ) − ( 𝑇 ‘ 𝑀 ) ) ) |
| 299 |
137
|
ffnd |
⊢ ( 𝜑 → seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ) Fn ℕ ) |
| 300 |
|
breq1 |
⊢ ( 𝑥 = ( seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ) ‘ 𝑛 ) → ( 𝑥 ≤ ( sup ( ran 𝑇 , ℝ* , < ) − ( 𝑇 ‘ 𝑀 ) ) ↔ ( seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ) ‘ 𝑛 ) ≤ ( sup ( ran 𝑇 , ℝ* , < ) − ( 𝑇 ‘ 𝑀 ) ) ) ) |
| 301 |
300
|
ralrn |
⊢ ( seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ) Fn ℕ → ( ∀ 𝑥 ∈ ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ) 𝑥 ≤ ( sup ( ran 𝑇 , ℝ* , < ) − ( 𝑇 ‘ 𝑀 ) ) ↔ ∀ 𝑛 ∈ ℕ ( seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ) ‘ 𝑛 ) ≤ ( sup ( ran 𝑇 , ℝ* , < ) − ( 𝑇 ‘ 𝑀 ) ) ) ) |
| 302 |
299 301
|
syl |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ) 𝑥 ≤ ( sup ( ran 𝑇 , ℝ* , < ) − ( 𝑇 ‘ 𝑀 ) ) ↔ ∀ 𝑛 ∈ ℕ ( seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ) ‘ 𝑛 ) ≤ ( sup ( ran 𝑇 , ℝ* , < ) − ( 𝑇 ‘ 𝑀 ) ) ) ) |
| 303 |
298 302
|
mpbird |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ) 𝑥 ≤ ( sup ( ran 𝑇 , ℝ* , < ) − ( 𝑇 ‘ 𝑀 ) ) ) |
| 304 |
|
supxrleub |
⊢ ( ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ) ⊆ ℝ* ∧ ( sup ( ran 𝑇 , ℝ* , < ) − ( 𝑇 ‘ 𝑀 ) ) ∈ ℝ* ) → ( sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ) , ℝ* , < ) ≤ ( sup ( ran 𝑇 , ℝ* , < ) − ( 𝑇 ‘ 𝑀 ) ) ↔ ∀ 𝑥 ∈ ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ) 𝑥 ≤ ( sup ( ran 𝑇 , ℝ* , < ) − ( 𝑇 ‘ 𝑀 ) ) ) ) |
| 305 |
140 143 304
|
syl2anc |
⊢ ( 𝜑 → ( sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ) , ℝ* , < ) ≤ ( sup ( ran 𝑇 , ℝ* , < ) − ( 𝑇 ‘ 𝑀 ) ) ↔ ∀ 𝑥 ∈ ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ) 𝑥 ≤ ( sup ( ran 𝑇 , ℝ* , < ) − ( 𝑇 ‘ 𝑀 ) ) ) ) |
| 306 |
303 305
|
mpbird |
⊢ ( 𝜑 → sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ) , ℝ* , < ) ≤ ( sup ( ran 𝑇 , ℝ* , < ) − ( 𝑇 ‘ 𝑀 ) ) ) |
| 307 |
127 142 143 184 306
|
xrletrd |
⊢ ( 𝜑 → ( vol* ‘ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ≤ ( sup ( ran 𝑇 , ℝ* , < ) − ( 𝑇 ‘ 𝑀 ) ) ) |
| 308 |
125 90 50
|
absdifltd |
⊢ ( 𝜑 → ( ( abs ‘ ( ( 𝑇 ‘ 𝑀 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 ↔ ( ( sup ( ran 𝑇 , ℝ* , < ) − 𝐶 ) < ( 𝑇 ‘ 𝑀 ) ∧ ( 𝑇 ‘ 𝑀 ) < ( sup ( ran 𝑇 , ℝ* , < ) + 𝐶 ) ) ) ) |
| 309 |
12 308
|
mpbid |
⊢ ( 𝜑 → ( ( sup ( ran 𝑇 , ℝ* , < ) − 𝐶 ) < ( 𝑇 ‘ 𝑀 ) ∧ ( 𝑇 ‘ 𝑀 ) < ( sup ( ran 𝑇 , ℝ* , < ) + 𝐶 ) ) ) |
| 310 |
309
|
simpld |
⊢ ( 𝜑 → ( sup ( ran 𝑇 , ℝ* , < ) − 𝐶 ) < ( 𝑇 ‘ 𝑀 ) ) |
| 311 |
90 50 125 310
|
ltsub23d |
⊢ ( 𝜑 → ( sup ( ran 𝑇 , ℝ* , < ) − ( 𝑇 ‘ 𝑀 ) ) < 𝐶 ) |
| 312 |
97 126 50 307 311
|
lelttrd |
⊢ ( 𝜑 → ( vol* ‘ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) < 𝐶 ) |
| 313 |
97 50 49 312
|
ltadd2dd |
⊢ ( 𝜑 → ( ( vol* ‘ ( 𝐾 ∩ 𝐴 ) ) + ( vol* ‘ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ) < ( ( vol* ‘ ( 𝐾 ∩ 𝐴 ) ) + 𝐶 ) ) |
| 314 |
23 98 51 119 313
|
lelttrd |
⊢ ( 𝜑 → ( vol* ‘ ( 𝐸 ∩ 𝐴 ) ) < ( ( vol* ‘ ( 𝐾 ∩ 𝐴 ) ) + 𝐶 ) ) |
| 315 |
54 97
|
readdcld |
⊢ ( 𝜑 → ( ( vol* ‘ ( 𝐾 ∖ 𝐴 ) ) + ( vol* ‘ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ) ∈ ℝ ) |
| 316 |
|
difss |
⊢ ( 𝐾 ∖ 𝐴 ) ⊆ 𝐾 |
| 317 |
|
unss1 |
⊢ ( ( 𝐾 ∖ 𝐴 ) ⊆ 𝐾 → ( ( 𝐾 ∖ 𝐴 ) ∪ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ⊆ ( 𝐾 ∪ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ) |
| 318 |
316 317
|
ax-mp |
⊢ ( ( 𝐾 ∖ 𝐴 ) ∪ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ⊆ ( 𝐾 ∪ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) |
| 319 |
318 88
|
sseqtrrid |
⊢ ( 𝜑 → ( ( 𝐾 ∖ 𝐴 ) ∪ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ⊆ ∪ ran ( (,) ∘ 𝐺 ) ) |
| 320 |
|
ovolsscl |
⊢ ( ( ( ( 𝐾 ∖ 𝐴 ) ∪ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ⊆ ∪ ran ( (,) ∘ 𝐺 ) ∧ ∪ ran ( (,) ∘ 𝐺 ) ⊆ ℝ ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝐺 ) ) ∈ ℝ ) → ( vol* ‘ ( ( 𝐾 ∖ 𝐴 ) ∪ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ) ∈ ℝ ) |
| 321 |
319 20 95 320
|
syl3anc |
⊢ ( 𝜑 → ( vol* ‘ ( ( 𝐾 ∖ 𝐴 ) ∪ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ) ∈ ℝ ) |
| 322 |
104
|
ssdifd |
⊢ ( 𝜑 → ( 𝐸 ∖ 𝐴 ) ⊆ ( ( 𝐾 ∪ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ∖ 𝐴 ) ) |
| 323 |
|
difundir |
⊢ ( ( 𝐾 ∪ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ∖ 𝐴 ) = ( ( 𝐾 ∖ 𝐴 ) ∪ ( ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ∖ 𝐴 ) ) |
| 324 |
|
difss |
⊢ ( ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ∖ 𝐴 ) ⊆ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) |
| 325 |
|
unss2 |
⊢ ( ( ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ∖ 𝐴 ) ⊆ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → ( ( 𝐾 ∖ 𝐴 ) ∪ ( ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ∖ 𝐴 ) ) ⊆ ( ( 𝐾 ∖ 𝐴 ) ∪ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ) |
| 326 |
324 325
|
ax-mp |
⊢ ( ( 𝐾 ∖ 𝐴 ) ∪ ( ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ∖ 𝐴 ) ) ⊆ ( ( 𝐾 ∖ 𝐴 ) ∪ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) |
| 327 |
323 326
|
eqsstri |
⊢ ( ( 𝐾 ∪ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ∖ 𝐴 ) ⊆ ( ( 𝐾 ∖ 𝐴 ) ∪ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) |
| 328 |
322 327
|
sstrdi |
⊢ ( 𝜑 → ( 𝐸 ∖ 𝐴 ) ⊆ ( ( 𝐾 ∖ 𝐴 ) ∪ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ) |
| 329 |
319 20
|
sstrd |
⊢ ( 𝜑 → ( ( 𝐾 ∖ 𝐴 ) ∪ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ⊆ ℝ ) |
| 330 |
|
ovolss |
⊢ ( ( ( 𝐸 ∖ 𝐴 ) ⊆ ( ( 𝐾 ∖ 𝐴 ) ∪ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ∧ ( ( 𝐾 ∖ 𝐴 ) ∪ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ⊆ ℝ ) → ( vol* ‘ ( 𝐸 ∖ 𝐴 ) ) ≤ ( vol* ‘ ( ( 𝐾 ∖ 𝐴 ) ∪ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ) ) |
| 331 |
328 329 330
|
syl2anc |
⊢ ( 𝜑 → ( vol* ‘ ( 𝐸 ∖ 𝐴 ) ) ≤ ( vol* ‘ ( ( 𝐾 ∖ 𝐴 ) ∪ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ) ) |
| 332 |
52 46
|
sstrd |
⊢ ( 𝜑 → ( 𝐾 ∖ 𝐴 ) ⊆ ℝ ) |
| 333 |
|
ovolun |
⊢ ( ( ( ( 𝐾 ∖ 𝐴 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝐾 ∖ 𝐴 ) ) ∈ ℝ ) ∧ ( ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ⊆ ℝ ∧ ( vol* ‘ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ∈ ℝ ) ) → ( vol* ‘ ( ( 𝐾 ∖ 𝐴 ) ∪ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ) ≤ ( ( vol* ‘ ( 𝐾 ∖ 𝐴 ) ) + ( vol* ‘ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ) ) |
| 334 |
332 54 116 97 333
|
syl22anc |
⊢ ( 𝜑 → ( vol* ‘ ( ( 𝐾 ∖ 𝐴 ) ∪ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ) ≤ ( ( vol* ‘ ( 𝐾 ∖ 𝐴 ) ) + ( vol* ‘ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ) ) |
| 335 |
26 321 315 331 334
|
letrd |
⊢ ( 𝜑 → ( vol* ‘ ( 𝐸 ∖ 𝐴 ) ) ≤ ( ( vol* ‘ ( 𝐾 ∖ 𝐴 ) ) + ( vol* ‘ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ) ) |
| 336 |
97 50 54 312
|
ltadd2dd |
⊢ ( 𝜑 → ( ( vol* ‘ ( 𝐾 ∖ 𝐴 ) ) + ( vol* ‘ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ) < ( ( vol* ‘ ( 𝐾 ∖ 𝐴 ) ) + 𝐶 ) ) |
| 337 |
26 315 55 335 336
|
lelttrd |
⊢ ( 𝜑 → ( vol* ‘ ( 𝐸 ∖ 𝐴 ) ) < ( ( vol* ‘ ( 𝐾 ∖ 𝐴 ) ) + 𝐶 ) ) |
| 338 |
23 26 51 55 314 337
|
lt2addd |
⊢ ( 𝜑 → ( ( vol* ‘ ( 𝐸 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝐸 ∖ 𝐴 ) ) ) < ( ( ( vol* ‘ ( 𝐾 ∩ 𝐴 ) ) + 𝐶 ) + ( ( vol* ‘ ( 𝐾 ∖ 𝐴 ) ) + 𝐶 ) ) ) |
| 339 |
49
|
recnd |
⊢ ( 𝜑 → ( vol* ‘ ( 𝐾 ∩ 𝐴 ) ) ∈ ℂ ) |
| 340 |
50
|
recnd |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
| 341 |
54
|
recnd |
⊢ ( 𝜑 → ( vol* ‘ ( 𝐾 ∖ 𝐴 ) ) ∈ ℂ ) |
| 342 |
339 340 341 340
|
add4d |
⊢ ( 𝜑 → ( ( ( vol* ‘ ( 𝐾 ∩ 𝐴 ) ) + 𝐶 ) + ( ( vol* ‘ ( 𝐾 ∖ 𝐴 ) ) + 𝐶 ) ) = ( ( ( vol* ‘ ( 𝐾 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝐾 ∖ 𝐴 ) ) ) + ( 𝐶 + 𝐶 ) ) ) |
| 343 |
338 342
|
breqtrd |
⊢ ( 𝜑 → ( ( vol* ‘ ( 𝐸 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝐸 ∖ 𝐴 ) ) ) < ( ( ( vol* ‘ ( 𝐾 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝐾 ∖ 𝐴 ) ) ) + ( 𝐶 + 𝐶 ) ) ) |