| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							uniioombl.1 | 
							⊢ ( 𝜑  →  𝐹 : ℕ ⟶ (  ≤   ∩  ( ℝ  ×  ℝ ) ) )  | 
						
						
							| 2 | 
							
								
							 | 
							uniioombl.2 | 
							⊢ ( 𝜑  →  Disj  𝑥  ∈  ℕ ( (,) ‘ ( 𝐹 ‘ 𝑥 ) ) )  | 
						
						
							| 3 | 
							
								
							 | 
							uniioombl.3 | 
							⊢ 𝑆  =  seq 1 (  +  ,  ( ( abs  ∘   −  )  ∘  𝐹 ) )  | 
						
						
							| 4 | 
							
								
							 | 
							uniioombl.a | 
							⊢ 𝐴  =  ∪  ran  ( (,)  ∘  𝐹 )  | 
						
						
							| 5 | 
							
								
							 | 
							uniioombl.e | 
							⊢ ( 𝜑  →  ( vol* ‘ 𝐸 )  ∈  ℝ )  | 
						
						
							| 6 | 
							
								
							 | 
							uniioombl.c | 
							⊢ ( 𝜑  →  𝐶  ∈  ℝ+ )  | 
						
						
							| 7 | 
							
								
							 | 
							uniioombl.g | 
							⊢ ( 𝜑  →  𝐺 : ℕ ⟶ (  ≤   ∩  ( ℝ  ×  ℝ ) ) )  | 
						
						
							| 8 | 
							
								
							 | 
							uniioombl.s | 
							⊢ ( 𝜑  →  𝐸  ⊆  ∪  ran  ( (,)  ∘  𝐺 ) )  | 
						
						
							| 9 | 
							
								
							 | 
							uniioombl.t | 
							⊢ 𝑇  =  seq 1 (  +  ,  ( ( abs  ∘   −  )  ∘  𝐺 ) )  | 
						
						
							| 10 | 
							
								
							 | 
							uniioombl.v | 
							⊢ ( 𝜑  →  sup ( ran  𝑇 ,  ℝ* ,   <  )  ≤  ( ( vol* ‘ 𝐸 )  +  𝐶 ) )  | 
						
						
							| 11 | 
							
								
							 | 
							uniioombl.m | 
							⊢ ( 𝜑  →  𝑀  ∈  ℕ )  | 
						
						
							| 12 | 
							
								
							 | 
							uniioombl.m2 | 
							⊢ ( 𝜑  →  ( abs ‘ ( ( 𝑇 ‘ 𝑀 )  −  sup ( ran  𝑇 ,  ℝ* ,   <  ) ) )  <  𝐶 )  | 
						
						
							| 13 | 
							
								
							 | 
							uniioombl.k | 
							⊢ 𝐾  =  ∪  ( ( (,)  ∘  𝐺 )  “  ( 1 ... 𝑀 ) )  | 
						
						
							| 14 | 
							
								
							 | 
							uniioombl.n | 
							⊢ ( 𝜑  →  𝑁  ∈  ℕ )  | 
						
						
							| 15 | 
							
								
							 | 
							uniioombl.n2 | 
							⊢ ( 𝜑  →  ∀ 𝑗  ∈  ( 1 ... 𝑀 ) ( abs ‘ ( Σ 𝑖  ∈  ( 1 ... 𝑁 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) )  −  ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) )  ∩  𝐴 ) ) ) )  <  ( 𝐶  /  𝑀 ) )  | 
						
						
							| 16 | 
							
								
							 | 
							uniioombl.l | 
							⊢ 𝐿  =  ∪  ( ( (,)  ∘  𝐹 )  “  ( 1 ... 𝑁 ) )  | 
						
						
							| 17 | 
							
								
							 | 
							inss1 | 
							⊢ ( 𝐾  ∩  𝐴 )  ⊆  𝐾  | 
						
						
							| 18 | 
							
								
							 | 
							imassrn | 
							⊢ ( ( (,)  ∘  𝐺 )  “  ( 1 ... 𝑀 ) )  ⊆  ran  ( (,)  ∘  𝐺 )  | 
						
						
							| 19 | 
							
								18
							 | 
							unissi | 
							⊢ ∪  ( ( (,)  ∘  𝐺 )  “  ( 1 ... 𝑀 ) )  ⊆  ∪  ran  ( (,)  ∘  𝐺 )  | 
						
						
							| 20 | 
							
								13 19
							 | 
							eqsstri | 
							⊢ 𝐾  ⊆  ∪  ran  ( (,)  ∘  𝐺 )  | 
						
						
							| 21 | 
							
								7
							 | 
							uniiccdif | 
							⊢ ( 𝜑  →  ( ∪  ran  ( (,)  ∘  𝐺 )  ⊆  ∪  ran  ( [,]  ∘  𝐺 )  ∧  ( vol* ‘ ( ∪  ran  ( [,]  ∘  𝐺 )  ∖  ∪  ran  ( (,)  ∘  𝐺 ) ) )  =  0 ) )  | 
						
						
							| 22 | 
							
								21
							 | 
							simpld | 
							⊢ ( 𝜑  →  ∪  ran  ( (,)  ∘  𝐺 )  ⊆  ∪  ran  ( [,]  ∘  𝐺 ) )  | 
						
						
							| 23 | 
							
								
							 | 
							ovolficcss | 
							⊢ ( 𝐺 : ℕ ⟶ (  ≤   ∩  ( ℝ  ×  ℝ ) )  →  ∪  ran  ( [,]  ∘  𝐺 )  ⊆  ℝ )  | 
						
						
							| 24 | 
							
								7 23
							 | 
							syl | 
							⊢ ( 𝜑  →  ∪  ran  ( [,]  ∘  𝐺 )  ⊆  ℝ )  | 
						
						
							| 25 | 
							
								22 24
							 | 
							sstrd | 
							⊢ ( 𝜑  →  ∪  ran  ( (,)  ∘  𝐺 )  ⊆  ℝ )  | 
						
						
							| 26 | 
							
								20 25
							 | 
							sstrid | 
							⊢ ( 𝜑  →  𝐾  ⊆  ℝ )  | 
						
						
							| 27 | 
							
								1 2 3 4 5 6 7 8 9 10
							 | 
							uniioombllem1 | 
							⊢ ( 𝜑  →  sup ( ran  𝑇 ,  ℝ* ,   <  )  ∈  ℝ )  | 
						
						
							| 28 | 
							
								
							 | 
							ssid | 
							⊢ ∪  ran  ( (,)  ∘  𝐺 )  ⊆  ∪  ran  ( (,)  ∘  𝐺 )  | 
						
						
							| 29 | 
							
								9
							 | 
							ovollb | 
							⊢ ( ( 𝐺 : ℕ ⟶ (  ≤   ∩  ( ℝ  ×  ℝ ) )  ∧  ∪  ran  ( (,)  ∘  𝐺 )  ⊆  ∪  ran  ( (,)  ∘  𝐺 ) )  →  ( vol* ‘ ∪  ran  ( (,)  ∘  𝐺 ) )  ≤  sup ( ran  𝑇 ,  ℝ* ,   <  ) )  | 
						
						
							| 30 | 
							
								7 28 29
							 | 
							sylancl | 
							⊢ ( 𝜑  →  ( vol* ‘ ∪  ran  ( (,)  ∘  𝐺 ) )  ≤  sup ( ran  𝑇 ,  ℝ* ,   <  ) )  | 
						
						
							| 31 | 
							
								
							 | 
							ovollecl | 
							⊢ ( ( ∪  ran  ( (,)  ∘  𝐺 )  ⊆  ℝ  ∧  sup ( ran  𝑇 ,  ℝ* ,   <  )  ∈  ℝ  ∧  ( vol* ‘ ∪  ran  ( (,)  ∘  𝐺 ) )  ≤  sup ( ran  𝑇 ,  ℝ* ,   <  ) )  →  ( vol* ‘ ∪  ran  ( (,)  ∘  𝐺 ) )  ∈  ℝ )  | 
						
						
							| 32 | 
							
								25 27 30 31
							 | 
							syl3anc | 
							⊢ ( 𝜑  →  ( vol* ‘ ∪  ran  ( (,)  ∘  𝐺 ) )  ∈  ℝ )  | 
						
						
							| 33 | 
							
								
							 | 
							ovolsscl | 
							⊢ ( ( 𝐾  ⊆  ∪  ran  ( (,)  ∘  𝐺 )  ∧  ∪  ran  ( (,)  ∘  𝐺 )  ⊆  ℝ  ∧  ( vol* ‘ ∪  ran  ( (,)  ∘  𝐺 ) )  ∈  ℝ )  →  ( vol* ‘ 𝐾 )  ∈  ℝ )  | 
						
						
							| 34 | 
							
								20 25 32 33
							 | 
							mp3an2i | 
							⊢ ( 𝜑  →  ( vol* ‘ 𝐾 )  ∈  ℝ )  | 
						
						
							| 35 | 
							
								
							 | 
							ovolsscl | 
							⊢ ( ( ( 𝐾  ∩  𝐴 )  ⊆  𝐾  ∧  𝐾  ⊆  ℝ  ∧  ( vol* ‘ 𝐾 )  ∈  ℝ )  →  ( vol* ‘ ( 𝐾  ∩  𝐴 ) )  ∈  ℝ )  | 
						
						
							| 36 | 
							
								17 26 34 35
							 | 
							mp3an2i | 
							⊢ ( 𝜑  →  ( vol* ‘ ( 𝐾  ∩  𝐴 ) )  ∈  ℝ )  | 
						
						
							| 37 | 
							
								
							 | 
							inss1 | 
							⊢ ( 𝐾  ∩  𝐿 )  ⊆  𝐾  | 
						
						
							| 38 | 
							
								
							 | 
							ovolsscl | 
							⊢ ( ( ( 𝐾  ∩  𝐿 )  ⊆  𝐾  ∧  𝐾  ⊆  ℝ  ∧  ( vol* ‘ 𝐾 )  ∈  ℝ )  →  ( vol* ‘ ( 𝐾  ∩  𝐿 ) )  ∈  ℝ )  | 
						
						
							| 39 | 
							
								37 26 34 38
							 | 
							mp3an2i | 
							⊢ ( 𝜑  →  ( vol* ‘ ( 𝐾  ∩  𝐿 ) )  ∈  ℝ )  | 
						
						
							| 40 | 
							
								
							 | 
							ssun2 | 
							⊢ ∪  𝑗  ∈  ( 1 ... 𝑀 ) ∪  𝑖  ∈  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) )  ⊆  ( ( 𝐾  ∩  𝐿 )  ∪  ∪  𝑗  ∈  ( 1 ... 𝑀 ) ∪  𝑖  ∈  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) )  | 
						
						
							| 41 | 
							
								
							 | 
							nnuz | 
							⊢ ℕ  =  ( ℤ≥ ‘ 1 )  | 
						
						
							| 42 | 
							
								14
							 | 
							peano2nnd | 
							⊢ ( 𝜑  →  ( 𝑁  +  1 )  ∈  ℕ )  | 
						
						
							| 43 | 
							
								42 41
							 | 
							eleqtrdi | 
							⊢ ( 𝜑  →  ( 𝑁  +  1 )  ∈  ( ℤ≥ ‘ 1 ) )  | 
						
						
							| 44 | 
							
								
							 | 
							uzsplit | 
							⊢ ( ( 𝑁  +  1 )  ∈  ( ℤ≥ ‘ 1 )  →  ( ℤ≥ ‘ 1 )  =  ( ( 1 ... ( ( 𝑁  +  1 )  −  1 ) )  ∪  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ) )  | 
						
						
							| 45 | 
							
								43 44
							 | 
							syl | 
							⊢ ( 𝜑  →  ( ℤ≥ ‘ 1 )  =  ( ( 1 ... ( ( 𝑁  +  1 )  −  1 ) )  ∪  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ) )  | 
						
						
							| 46 | 
							
								41 45
							 | 
							eqtrid | 
							⊢ ( 𝜑  →  ℕ  =  ( ( 1 ... ( ( 𝑁  +  1 )  −  1 ) )  ∪  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ) )  | 
						
						
							| 47 | 
							
								14
							 | 
							nncnd | 
							⊢ ( 𝜑  →  𝑁  ∈  ℂ )  | 
						
						
							| 48 | 
							
								
							 | 
							ax-1cn | 
							⊢ 1  ∈  ℂ  | 
						
						
							| 49 | 
							
								
							 | 
							pncan | 
							⊢ ( ( 𝑁  ∈  ℂ  ∧  1  ∈  ℂ )  →  ( ( 𝑁  +  1 )  −  1 )  =  𝑁 )  | 
						
						
							| 50 | 
							
								47 48 49
							 | 
							sylancl | 
							⊢ ( 𝜑  →  ( ( 𝑁  +  1 )  −  1 )  =  𝑁 )  | 
						
						
							| 51 | 
							
								50
							 | 
							oveq2d | 
							⊢ ( 𝜑  →  ( 1 ... ( ( 𝑁  +  1 )  −  1 ) )  =  ( 1 ... 𝑁 ) )  | 
						
						
							| 52 | 
							
								51
							 | 
							uneq1d | 
							⊢ ( 𝜑  →  ( ( 1 ... ( ( 𝑁  +  1 )  −  1 ) )  ∪  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) )  =  ( ( 1 ... 𝑁 )  ∪  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ) )  | 
						
						
							| 53 | 
							
								46 52
							 | 
							eqtrd | 
							⊢ ( 𝜑  →  ℕ  =  ( ( 1 ... 𝑁 )  ∪  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ) )  | 
						
						
							| 54 | 
							
								53
							 | 
							iuneq1d | 
							⊢ ( 𝜑  →  ∪  𝑖  ∈  ℕ ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  =  ∪  𝑖  ∈  ( ( 1 ... 𝑁 )  ∪  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) )  | 
						
						
							| 55 | 
							
								
							 | 
							iunxun | 
							⊢ ∪  𝑖  ∈  ( ( 1 ... 𝑁 )  ∪  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  =  ( ∪  𝑖  ∈  ( 1 ... 𝑁 ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∪  ∪  𝑖  ∈  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) )  | 
						
						
							| 56 | 
							
								54 55
							 | 
							eqtrdi | 
							⊢ ( 𝜑  →  ∪  𝑖  ∈  ℕ ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  =  ( ∪  𝑖  ∈  ( 1 ... 𝑁 ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∪  ∪  𝑖  ∈  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ) )  | 
						
						
							| 57 | 
							
								
							 | 
							ioof | 
							⊢ (,) : ( ℝ*  ×  ℝ* ) ⟶ 𝒫  ℝ  | 
						
						
							| 58 | 
							
								
							 | 
							inss2 | 
							⊢ (  ≤   ∩  ( ℝ  ×  ℝ ) )  ⊆  ( ℝ  ×  ℝ )  | 
						
						
							| 59 | 
							
								
							 | 
							rexpssxrxp | 
							⊢ ( ℝ  ×  ℝ )  ⊆  ( ℝ*  ×  ℝ* )  | 
						
						
							| 60 | 
							
								58 59
							 | 
							sstri | 
							⊢ (  ≤   ∩  ( ℝ  ×  ℝ ) )  ⊆  ( ℝ*  ×  ℝ* )  | 
						
						
							| 61 | 
							
								
							 | 
							fss | 
							⊢ ( ( 𝐹 : ℕ ⟶ (  ≤   ∩  ( ℝ  ×  ℝ ) )  ∧  (  ≤   ∩  ( ℝ  ×  ℝ ) )  ⊆  ( ℝ*  ×  ℝ* ) )  →  𝐹 : ℕ ⟶ ( ℝ*  ×  ℝ* ) )  | 
						
						
							| 62 | 
							
								1 60 61
							 | 
							sylancl | 
							⊢ ( 𝜑  →  𝐹 : ℕ ⟶ ( ℝ*  ×  ℝ* ) )  | 
						
						
							| 63 | 
							
								
							 | 
							fco | 
							⊢ ( ( (,) : ( ℝ*  ×  ℝ* ) ⟶ 𝒫  ℝ  ∧  𝐹 : ℕ ⟶ ( ℝ*  ×  ℝ* ) )  →  ( (,)  ∘  𝐹 ) : ℕ ⟶ 𝒫  ℝ )  | 
						
						
							| 64 | 
							
								57 62 63
							 | 
							sylancr | 
							⊢ ( 𝜑  →  ( (,)  ∘  𝐹 ) : ℕ ⟶ 𝒫  ℝ )  | 
						
						
							| 65 | 
							
								
							 | 
							ffn | 
							⊢ ( ( (,)  ∘  𝐹 ) : ℕ ⟶ 𝒫  ℝ  →  ( (,)  ∘  𝐹 )  Fn  ℕ )  | 
						
						
							| 66 | 
							
								
							 | 
							fniunfv | 
							⊢ ( ( (,)  ∘  𝐹 )  Fn  ℕ  →  ∪  𝑖  ∈  ℕ ( ( (,)  ∘  𝐹 ) ‘ 𝑖 )  =  ∪  ran  ( (,)  ∘  𝐹 ) )  | 
						
						
							| 67 | 
							
								64 65 66
							 | 
							3syl | 
							⊢ ( 𝜑  →  ∪  𝑖  ∈  ℕ ( ( (,)  ∘  𝐹 ) ‘ 𝑖 )  =  ∪  ran  ( (,)  ∘  𝐹 ) )  | 
						
						
							| 68 | 
							
								
							 | 
							fvco3 | 
							⊢ ( ( 𝐹 : ℕ ⟶ (  ≤   ∩  ( ℝ  ×  ℝ ) )  ∧  𝑖  ∈  ℕ )  →  ( ( (,)  ∘  𝐹 ) ‘ 𝑖 )  =  ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) )  | 
						
						
							| 69 | 
							
								1 68
							 | 
							sylan | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ )  →  ( ( (,)  ∘  𝐹 ) ‘ 𝑖 )  =  ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) )  | 
						
						
							| 70 | 
							
								69
							 | 
							iuneq2dv | 
							⊢ ( 𝜑  →  ∪  𝑖  ∈  ℕ ( ( (,)  ∘  𝐹 ) ‘ 𝑖 )  =  ∪  𝑖  ∈  ℕ ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) )  | 
						
						
							| 71 | 
							
								67 70
							 | 
							eqtr3d | 
							⊢ ( 𝜑  →  ∪  ran  ( (,)  ∘  𝐹 )  =  ∪  𝑖  ∈  ℕ ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) )  | 
						
						
							| 72 | 
							
								4 71
							 | 
							eqtrid | 
							⊢ ( 𝜑  →  𝐴  =  ∪  𝑖  ∈  ℕ ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) )  | 
						
						
							| 73 | 
							
								
							 | 
							ffun | 
							⊢ ( ( (,)  ∘  𝐹 ) : ℕ ⟶ 𝒫  ℝ  →  Fun  ( (,)  ∘  𝐹 ) )  | 
						
						
							| 74 | 
							
								
							 | 
							funiunfv | 
							⊢ ( Fun  ( (,)  ∘  𝐹 )  →  ∪  𝑖  ∈  ( 1 ... 𝑁 ) ( ( (,)  ∘  𝐹 ) ‘ 𝑖 )  =  ∪  ( ( (,)  ∘  𝐹 )  “  ( 1 ... 𝑁 ) ) )  | 
						
						
							| 75 | 
							
								64 73 74
							 | 
							3syl | 
							⊢ ( 𝜑  →  ∪  𝑖  ∈  ( 1 ... 𝑁 ) ( ( (,)  ∘  𝐹 ) ‘ 𝑖 )  =  ∪  ( ( (,)  ∘  𝐹 )  “  ( 1 ... 𝑁 ) ) )  | 
						
						
							| 76 | 
							
								
							 | 
							elfznn | 
							⊢ ( 𝑖  ∈  ( 1 ... 𝑁 )  →  𝑖  ∈  ℕ )  | 
						
						
							| 77 | 
							
								1 76 68
							 | 
							syl2an | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑁 ) )  →  ( ( (,)  ∘  𝐹 ) ‘ 𝑖 )  =  ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) )  | 
						
						
							| 78 | 
							
								77
							 | 
							iuneq2dv | 
							⊢ ( 𝜑  →  ∪  𝑖  ∈  ( 1 ... 𝑁 ) ( ( (,)  ∘  𝐹 ) ‘ 𝑖 )  =  ∪  𝑖  ∈  ( 1 ... 𝑁 ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) )  | 
						
						
							| 79 | 
							
								75 78
							 | 
							eqtr3d | 
							⊢ ( 𝜑  →  ∪  ( ( (,)  ∘  𝐹 )  “  ( 1 ... 𝑁 ) )  =  ∪  𝑖  ∈  ( 1 ... 𝑁 ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) )  | 
						
						
							| 80 | 
							
								16 79
							 | 
							eqtrid | 
							⊢ ( 𝜑  →  𝐿  =  ∪  𝑖  ∈  ( 1 ... 𝑁 ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) )  | 
						
						
							| 81 | 
							
								80
							 | 
							uneq1d | 
							⊢ ( 𝜑  →  ( 𝐿  ∪  ∪  𝑖  ∈  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) )  =  ( ∪  𝑖  ∈  ( 1 ... 𝑁 ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∪  ∪  𝑖  ∈  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ) )  | 
						
						
							| 82 | 
							
								56 72 81
							 | 
							3eqtr4d | 
							⊢ ( 𝜑  →  𝐴  =  ( 𝐿  ∪  ∪  𝑖  ∈  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ) )  | 
						
						
							| 83 | 
							
								82
							 | 
							ineq2d | 
							⊢ ( 𝜑  →  ( 𝐾  ∩  𝐴 )  =  ( 𝐾  ∩  ( 𝐿  ∪  ∪  𝑖  ∈  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) )  | 
						
						
							| 84 | 
							
								
							 | 
							indi | 
							⊢ ( 𝐾  ∩  ( 𝐿  ∪  ∪  𝑖  ∈  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ) )  =  ( ( 𝐾  ∩  𝐿 )  ∪  ( 𝐾  ∩  ∪  𝑖  ∈  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ) )  | 
						
						
							| 85 | 
							
								83 84
							 | 
							eqtrdi | 
							⊢ ( 𝜑  →  ( 𝐾  ∩  𝐴 )  =  ( ( 𝐾  ∩  𝐿 )  ∪  ( 𝐾  ∩  ∪  𝑖  ∈  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) )  | 
						
						
							| 86 | 
							
								
							 | 
							fss | 
							⊢ ( ( 𝐺 : ℕ ⟶ (  ≤   ∩  ( ℝ  ×  ℝ ) )  ∧  (  ≤   ∩  ( ℝ  ×  ℝ ) )  ⊆  ( ℝ*  ×  ℝ* ) )  →  𝐺 : ℕ ⟶ ( ℝ*  ×  ℝ* ) )  | 
						
						
							| 87 | 
							
								7 60 86
							 | 
							sylancl | 
							⊢ ( 𝜑  →  𝐺 : ℕ ⟶ ( ℝ*  ×  ℝ* ) )  | 
						
						
							| 88 | 
							
								
							 | 
							fco | 
							⊢ ( ( (,) : ( ℝ*  ×  ℝ* ) ⟶ 𝒫  ℝ  ∧  𝐺 : ℕ ⟶ ( ℝ*  ×  ℝ* ) )  →  ( (,)  ∘  𝐺 ) : ℕ ⟶ 𝒫  ℝ )  | 
						
						
							| 89 | 
							
								57 87 88
							 | 
							sylancr | 
							⊢ ( 𝜑  →  ( (,)  ∘  𝐺 ) : ℕ ⟶ 𝒫  ℝ )  | 
						
						
							| 90 | 
							
								
							 | 
							ffun | 
							⊢ ( ( (,)  ∘  𝐺 ) : ℕ ⟶ 𝒫  ℝ  →  Fun  ( (,)  ∘  𝐺 ) )  | 
						
						
							| 91 | 
							
								
							 | 
							funiunfv | 
							⊢ ( Fun  ( (,)  ∘  𝐺 )  →  ∪  𝑗  ∈  ( 1 ... 𝑀 ) ( ( (,)  ∘  𝐺 ) ‘ 𝑗 )  =  ∪  ( ( (,)  ∘  𝐺 )  “  ( 1 ... 𝑀 ) ) )  | 
						
						
							| 92 | 
							
								89 90 91
							 | 
							3syl | 
							⊢ ( 𝜑  →  ∪  𝑗  ∈  ( 1 ... 𝑀 ) ( ( (,)  ∘  𝐺 ) ‘ 𝑗 )  =  ∪  ( ( (,)  ∘  𝐺 )  “  ( 1 ... 𝑀 ) ) )  | 
						
						
							| 93 | 
							
								
							 | 
							elfznn | 
							⊢ ( 𝑗  ∈  ( 1 ... 𝑀 )  →  𝑗  ∈  ℕ )  | 
						
						
							| 94 | 
							
								
							 | 
							fvco3 | 
							⊢ ( ( 𝐺 : ℕ ⟶ (  ≤   ∩  ( ℝ  ×  ℝ ) )  ∧  𝑗  ∈  ℕ )  →  ( ( (,)  ∘  𝐺 ) ‘ 𝑗 )  =  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) )  | 
						
						
							| 95 | 
							
								7 93 94
							 | 
							syl2an | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  ( ( (,)  ∘  𝐺 ) ‘ 𝑗 )  =  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) )  | 
						
						
							| 96 | 
							
								95
							 | 
							iuneq2dv | 
							⊢ ( 𝜑  →  ∪  𝑗  ∈  ( 1 ... 𝑀 ) ( ( (,)  ∘  𝐺 ) ‘ 𝑗 )  =  ∪  𝑗  ∈  ( 1 ... 𝑀 ) ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) )  | 
						
						
							| 97 | 
							
								92 96
							 | 
							eqtr3d | 
							⊢ ( 𝜑  →  ∪  ( ( (,)  ∘  𝐺 )  “  ( 1 ... 𝑀 ) )  =  ∪  𝑗  ∈  ( 1 ... 𝑀 ) ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) )  | 
						
						
							| 98 | 
							
								13 97
							 | 
							eqtrid | 
							⊢ ( 𝜑  →  𝐾  =  ∪  𝑗  ∈  ( 1 ... 𝑀 ) ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) )  | 
						
						
							| 99 | 
							
								98
							 | 
							ineq2d | 
							⊢ ( 𝜑  →  ( ∪  𝑖  ∈  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∩  𝐾 )  =  ( ∪  𝑖  ∈  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∩  ∪  𝑗  ∈  ( 1 ... 𝑀 ) ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) )  | 
						
						
							| 100 | 
							
								
							 | 
							incom | 
							⊢ ( 𝐾  ∩  ∪  𝑖  ∈  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) )  =  ( ∪  𝑖  ∈  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∩  𝐾 )  | 
						
						
							| 101 | 
							
								
							 | 
							iunin2 | 
							⊢ ∪  𝑖  ∈  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) )  ∩  ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) )  =  ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) )  ∩  ∪  𝑖  ∈  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) )  | 
						
						
							| 102 | 
							
								
							 | 
							incom | 
							⊢ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) )  =  ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) )  ∩  ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) )  | 
						
						
							| 103 | 
							
								102
							 | 
							a1i | 
							⊢ ( 𝑖  ∈  ( ℤ≥ ‘ ( 𝑁  +  1 ) )  →  ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) )  =  ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) )  ∩  ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ) )  | 
						
						
							| 104 | 
							
								103
							 | 
							iuneq2i | 
							⊢ ∪  𝑖  ∈  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) )  =  ∪  𝑖  ∈  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) )  ∩  ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) )  | 
						
						
							| 105 | 
							
								
							 | 
							incom | 
							⊢ ( ∪  𝑖  ∈  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) )  =  ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) )  ∩  ∪  𝑖  ∈  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) )  | 
						
						
							| 106 | 
							
								101 104 105
							 | 
							3eqtr4ri | 
							⊢ ( ∪  𝑖  ∈  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) )  =  ∪  𝑖  ∈  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) )  | 
						
						
							| 107 | 
							
								106
							 | 
							a1i | 
							⊢ ( 𝑗  ∈  ( 1 ... 𝑀 )  →  ( ∪  𝑖  ∈  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) )  =  ∪  𝑖  ∈  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) )  | 
						
						
							| 108 | 
							
								107
							 | 
							iuneq2i | 
							⊢ ∪  𝑗  ∈  ( 1 ... 𝑀 ) ( ∪  𝑖  ∈  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) )  =  ∪  𝑗  ∈  ( 1 ... 𝑀 ) ∪  𝑖  ∈  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) )  | 
						
						
							| 109 | 
							
								
							 | 
							iunin2 | 
							⊢ ∪  𝑗  ∈  ( 1 ... 𝑀 ) ( ∪  𝑖  ∈  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) )  =  ( ∪  𝑖  ∈  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∩  ∪  𝑗  ∈  ( 1 ... 𝑀 ) ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) )  | 
						
						
							| 110 | 
							
								108 109
							 | 
							eqtr3i | 
							⊢ ∪  𝑗  ∈  ( 1 ... 𝑀 ) ∪  𝑖  ∈  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) )  =  ( ∪  𝑖  ∈  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∩  ∪  𝑗  ∈  ( 1 ... 𝑀 ) ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) )  | 
						
						
							| 111 | 
							
								99 100 110
							 | 
							3eqtr4g | 
							⊢ ( 𝜑  →  ( 𝐾  ∩  ∪  𝑖  ∈  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) )  =  ∪  𝑗  ∈  ( 1 ... 𝑀 ) ∪  𝑖  ∈  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) )  | 
						
						
							| 112 | 
							
								111
							 | 
							uneq2d | 
							⊢ ( 𝜑  →  ( ( 𝐾  ∩  𝐿 )  ∪  ( 𝐾  ∩  ∪  𝑖  ∈  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ) )  =  ( ( 𝐾  ∩  𝐿 )  ∪  ∪  𝑗  ∈  ( 1 ... 𝑀 ) ∪  𝑖  ∈  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) )  | 
						
						
							| 113 | 
							
								85 112
							 | 
							eqtrd | 
							⊢ ( 𝜑  →  ( 𝐾  ∩  𝐴 )  =  ( ( 𝐾  ∩  𝐿 )  ∪  ∪  𝑗  ∈  ( 1 ... 𝑀 ) ∪  𝑖  ∈  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) )  | 
						
						
							| 114 | 
							
								40 113
							 | 
							sseqtrrid | 
							⊢ ( 𝜑  →  ∪  𝑗  ∈  ( 1 ... 𝑀 ) ∪  𝑖  ∈  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) )  ⊆  ( 𝐾  ∩  𝐴 ) )  | 
						
						
							| 115 | 
							
								114 17
							 | 
							sstrdi | 
							⊢ ( 𝜑  →  ∪  𝑗  ∈  ( 1 ... 𝑀 ) ∪  𝑖  ∈  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) )  ⊆  𝐾 )  | 
						
						
							| 116 | 
							
								
							 | 
							ovolsscl | 
							⊢ ( ( ∪  𝑗  ∈  ( 1 ... 𝑀 ) ∪  𝑖  ∈  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) )  ⊆  𝐾  ∧  𝐾  ⊆  ℝ  ∧  ( vol* ‘ 𝐾 )  ∈  ℝ )  →  ( vol* ‘ ∪  𝑗  ∈  ( 1 ... 𝑀 ) ∪  𝑖  ∈  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) )  ∈  ℝ )  | 
						
						
							| 117 | 
							
								115 26 34 116
							 | 
							syl3anc | 
							⊢ ( 𝜑  →  ( vol* ‘ ∪  𝑗  ∈  ( 1 ... 𝑀 ) ∪  𝑖  ∈  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) )  ∈  ℝ )  | 
						
						
							| 118 | 
							
								39 117
							 | 
							readdcld | 
							⊢ ( 𝜑  →  ( ( vol* ‘ ( 𝐾  ∩  𝐿 ) )  +  ( vol* ‘ ∪  𝑗  ∈  ( 1 ... 𝑀 ) ∪  𝑖  ∈  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) )  ∈  ℝ )  | 
						
						
							| 119 | 
							
								6
							 | 
							rpred | 
							⊢ ( 𝜑  →  𝐶  ∈  ℝ )  | 
						
						
							| 120 | 
							
								39 119
							 | 
							readdcld | 
							⊢ ( 𝜑  →  ( ( vol* ‘ ( 𝐾  ∩  𝐿 ) )  +  𝐶 )  ∈  ℝ )  | 
						
						
							| 121 | 
							
								113
							 | 
							fveq2d | 
							⊢ ( 𝜑  →  ( vol* ‘ ( 𝐾  ∩  𝐴 ) )  =  ( vol* ‘ ( ( 𝐾  ∩  𝐿 )  ∪  ∪  𝑗  ∈  ( 1 ... 𝑀 ) ∪  𝑖  ∈  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ) )  | 
						
						
							| 122 | 
							
								37 26
							 | 
							sstrid | 
							⊢ ( 𝜑  →  ( 𝐾  ∩  𝐿 )  ⊆  ℝ )  | 
						
						
							| 123 | 
							
								115 26
							 | 
							sstrd | 
							⊢ ( 𝜑  →  ∪  𝑗  ∈  ( 1 ... 𝑀 ) ∪  𝑖  ∈  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) )  ⊆  ℝ )  | 
						
						
							| 124 | 
							
								
							 | 
							ovolun | 
							⊢ ( ( ( ( 𝐾  ∩  𝐿 )  ⊆  ℝ  ∧  ( vol* ‘ ( 𝐾  ∩  𝐿 ) )  ∈  ℝ )  ∧  ( ∪  𝑗  ∈  ( 1 ... 𝑀 ) ∪  𝑖  ∈  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) )  ⊆  ℝ  ∧  ( vol* ‘ ∪  𝑗  ∈  ( 1 ... 𝑀 ) ∪  𝑖  ∈  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) )  ∈  ℝ ) )  →  ( vol* ‘ ( ( 𝐾  ∩  𝐿 )  ∪  ∪  𝑗  ∈  ( 1 ... 𝑀 ) ∪  𝑖  ∈  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) )  ≤  ( ( vol* ‘ ( 𝐾  ∩  𝐿 ) )  +  ( vol* ‘ ∪  𝑗  ∈  ( 1 ... 𝑀 ) ∪  𝑖  ∈  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ) )  | 
						
						
							| 125 | 
							
								122 39 123 117 124
							 | 
							syl22anc | 
							⊢ ( 𝜑  →  ( vol* ‘ ( ( 𝐾  ∩  𝐿 )  ∪  ∪  𝑗  ∈  ( 1 ... 𝑀 ) ∪  𝑖  ∈  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) )  ≤  ( ( vol* ‘ ( 𝐾  ∩  𝐿 ) )  +  ( vol* ‘ ∪  𝑗  ∈  ( 1 ... 𝑀 ) ∪  𝑖  ∈  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ) )  | 
						
						
							| 126 | 
							
								121 125
							 | 
							eqbrtrd | 
							⊢ ( 𝜑  →  ( vol* ‘ ( 𝐾  ∩  𝐴 ) )  ≤  ( ( vol* ‘ ( 𝐾  ∩  𝐿 ) )  +  ( vol* ‘ ∪  𝑗  ∈  ( 1 ... 𝑀 ) ∪  𝑖  ∈  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ) )  | 
						
						
							| 127 | 
							
								
							 | 
							fzfid | 
							⊢ ( 𝜑  →  ( 1 ... 𝑀 )  ∈  Fin )  | 
						
						
							| 128 | 
							
								
							 | 
							iunss | 
							⊢ ( ∪  𝑗  ∈  ( 1 ... 𝑀 ) ∪  𝑖  ∈  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) )  ⊆  𝐾  ↔  ∀ 𝑗  ∈  ( 1 ... 𝑀 ) ∪  𝑖  ∈  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) )  ⊆  𝐾 )  | 
						
						
							| 129 | 
							
								115 128
							 | 
							sylib | 
							⊢ ( 𝜑  →  ∀ 𝑗  ∈  ( 1 ... 𝑀 ) ∪  𝑖  ∈  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) )  ⊆  𝐾 )  | 
						
						
							| 130 | 
							
								129
							 | 
							r19.21bi | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  ∪  𝑖  ∈  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) )  ⊆  𝐾 )  | 
						
						
							| 131 | 
							
								26
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  𝐾  ⊆  ℝ )  | 
						
						
							| 132 | 
							
								34
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  ( vol* ‘ 𝐾 )  ∈  ℝ )  | 
						
						
							| 133 | 
							
								
							 | 
							ovolsscl | 
							⊢ ( ( ∪  𝑖  ∈  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) )  ⊆  𝐾  ∧  𝐾  ⊆  ℝ  ∧  ( vol* ‘ 𝐾 )  ∈  ℝ )  →  ( vol* ‘ ∪  𝑖  ∈  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) )  ∈  ℝ )  | 
						
						
							| 134 | 
							
								130 131 132 133
							 | 
							syl3anc | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  ( vol* ‘ ∪  𝑖  ∈  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) )  ∈  ℝ )  | 
						
						
							| 135 | 
							
								127 134
							 | 
							fsumrecl | 
							⊢ ( 𝜑  →  Σ 𝑗  ∈  ( 1 ... 𝑀 ) ( vol* ‘ ∪  𝑖  ∈  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) )  ∈  ℝ )  | 
						
						
							| 136 | 
							
								130 131
							 | 
							sstrd | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  ∪  𝑖  ∈  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) )  ⊆  ℝ )  | 
						
						
							| 137 | 
							
								136 134
							 | 
							jca | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  ( ∪  𝑖  ∈  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) )  ⊆  ℝ  ∧  ( vol* ‘ ∪  𝑖  ∈  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) )  ∈  ℝ ) )  | 
						
						
							| 138 | 
							
								137
							 | 
							ralrimiva | 
							⊢ ( 𝜑  →  ∀ 𝑗  ∈  ( 1 ... 𝑀 ) ( ∪  𝑖  ∈  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) )  ⊆  ℝ  ∧  ( vol* ‘ ∪  𝑖  ∈  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) )  ∈  ℝ ) )  | 
						
						
							| 139 | 
							
								
							 | 
							ovolfiniun | 
							⊢ ( ( ( 1 ... 𝑀 )  ∈  Fin  ∧  ∀ 𝑗  ∈  ( 1 ... 𝑀 ) ( ∪  𝑖  ∈  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) )  ⊆  ℝ  ∧  ( vol* ‘ ∪  𝑖  ∈  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) )  ∈  ℝ ) )  →  ( vol* ‘ ∪  𝑗  ∈  ( 1 ... 𝑀 ) ∪  𝑖  ∈  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) )  ≤  Σ 𝑗  ∈  ( 1 ... 𝑀 ) ( vol* ‘ ∪  𝑖  ∈  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) )  | 
						
						
							| 140 | 
							
								127 138 139
							 | 
							syl2anc | 
							⊢ ( 𝜑  →  ( vol* ‘ ∪  𝑗  ∈  ( 1 ... 𝑀 ) ∪  𝑖  ∈  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) )  ≤  Σ 𝑗  ∈  ( 1 ... 𝑀 ) ( vol* ‘ ∪  𝑖  ∈  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) )  | 
						
						
							| 141 | 
							
								119 11
							 | 
							nndivred | 
							⊢ ( 𝜑  →  ( 𝐶  /  𝑀 )  ∈  ℝ )  | 
						
						
							| 142 | 
							
								141
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  ( 𝐶  /  𝑀 )  ∈  ℝ )  | 
						
						
							| 143 | 
							
								80
							 | 
							ineq2d | 
							⊢ ( 𝜑  →  ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) )  ∩  𝐿 )  =  ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) )  ∩  ∪  𝑖  ∈  ( 1 ... 𝑁 ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ) )  | 
						
						
							| 144 | 
							
								143
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) )  ∩  𝐿 )  =  ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) )  ∩  ∪  𝑖  ∈  ( 1 ... 𝑁 ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ) )  | 
						
						
							| 145 | 
							
								102
							 | 
							a1i | 
							⊢ ( 𝑖  ∈  ( 1 ... 𝑁 )  →  ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) )  =  ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) )  ∩  ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ) )  | 
						
						
							| 146 | 
							
								145
							 | 
							iuneq2i | 
							⊢ ∪  𝑖  ∈  ( 1 ... 𝑁 ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) )  =  ∪  𝑖  ∈  ( 1 ... 𝑁 ) ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) )  ∩  ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) )  | 
						
						
							| 147 | 
							
								
							 | 
							iunin2 | 
							⊢ ∪  𝑖  ∈  ( 1 ... 𝑁 ) ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) )  ∩  ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) )  =  ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) )  ∩  ∪  𝑖  ∈  ( 1 ... 𝑁 ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) )  | 
						
						
							| 148 | 
							
								146 147
							 | 
							eqtri | 
							⊢ ∪  𝑖  ∈  ( 1 ... 𝑁 ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) )  =  ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) )  ∩  ∪  𝑖  ∈  ( 1 ... 𝑁 ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) )  | 
						
						
							| 149 | 
							
								144 148
							 | 
							eqtr4di | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) )  ∩  𝐿 )  =  ∪  𝑖  ∈  ( 1 ... 𝑁 ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) )  | 
						
						
							| 150 | 
							
								
							 | 
							fzfid | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  ( 1 ... 𝑁 )  ∈  Fin )  | 
						
						
							| 151 | 
							
								
							 | 
							ffvelcdm | 
							⊢ ( ( 𝐹 : ℕ ⟶ (  ≤   ∩  ( ℝ  ×  ℝ ) )  ∧  𝑖  ∈  ℕ )  →  ( 𝐹 ‘ 𝑖 )  ∈  (  ≤   ∩  ( ℝ  ×  ℝ ) ) )  | 
						
						
							| 152 | 
							
								1 76 151
							 | 
							syl2an | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑁 ) )  →  ( 𝐹 ‘ 𝑖 )  ∈  (  ≤   ∩  ( ℝ  ×  ℝ ) ) )  | 
						
						
							| 153 | 
							
								152
							 | 
							elin2d | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑁 ) )  →  ( 𝐹 ‘ 𝑖 )  ∈  ( ℝ  ×  ℝ ) )  | 
						
						
							| 154 | 
							
								
							 | 
							1st2nd2 | 
							⊢ ( ( 𝐹 ‘ 𝑖 )  ∈  ( ℝ  ×  ℝ )  →  ( 𝐹 ‘ 𝑖 )  =  〈 ( 1st  ‘ ( 𝐹 ‘ 𝑖 ) ) ,  ( 2nd  ‘ ( 𝐹 ‘ 𝑖 ) ) 〉 )  | 
						
						
							| 155 | 
							
								153 154
							 | 
							syl | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑁 ) )  →  ( 𝐹 ‘ 𝑖 )  =  〈 ( 1st  ‘ ( 𝐹 ‘ 𝑖 ) ) ,  ( 2nd  ‘ ( 𝐹 ‘ 𝑖 ) ) 〉 )  | 
						
						
							| 156 | 
							
								155
							 | 
							fveq2d | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑁 ) )  →  ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  =  ( (,) ‘ 〈 ( 1st  ‘ ( 𝐹 ‘ 𝑖 ) ) ,  ( 2nd  ‘ ( 𝐹 ‘ 𝑖 ) ) 〉 ) )  | 
						
						
							| 157 | 
							
								
							 | 
							df-ov | 
							⊢ ( ( 1st  ‘ ( 𝐹 ‘ 𝑖 ) ) (,) ( 2nd  ‘ ( 𝐹 ‘ 𝑖 ) ) )  =  ( (,) ‘ 〈 ( 1st  ‘ ( 𝐹 ‘ 𝑖 ) ) ,  ( 2nd  ‘ ( 𝐹 ‘ 𝑖 ) ) 〉 )  | 
						
						
							| 158 | 
							
								156 157
							 | 
							eqtr4di | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑁 ) )  →  ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  =  ( ( 1st  ‘ ( 𝐹 ‘ 𝑖 ) ) (,) ( 2nd  ‘ ( 𝐹 ‘ 𝑖 ) ) ) )  | 
						
						
							| 159 | 
							
								
							 | 
							ioombl | 
							⊢ ( ( 1st  ‘ ( 𝐹 ‘ 𝑖 ) ) (,) ( 2nd  ‘ ( 𝐹 ‘ 𝑖 ) ) )  ∈  dom  vol  | 
						
						
							| 160 | 
							
								158 159
							 | 
							eqeltrdi | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑁 ) )  →  ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∈  dom  vol )  | 
						
						
							| 161 | 
							
								160
							 | 
							adantlr | 
							⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  ∧  𝑖  ∈  ( 1 ... 𝑁 ) )  →  ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∈  dom  vol )  | 
						
						
							| 162 | 
							
								
							 | 
							ffvelcdm | 
							⊢ ( ( 𝐺 : ℕ ⟶ (  ≤   ∩  ( ℝ  ×  ℝ ) )  ∧  𝑗  ∈  ℕ )  →  ( 𝐺 ‘ 𝑗 )  ∈  (  ≤   ∩  ( ℝ  ×  ℝ ) ) )  | 
						
						
							| 163 | 
							
								7 93 162
							 | 
							syl2an | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  ( 𝐺 ‘ 𝑗 )  ∈  (  ≤   ∩  ( ℝ  ×  ℝ ) ) )  | 
						
						
							| 164 | 
							
								163
							 | 
							elin2d | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  ( 𝐺 ‘ 𝑗 )  ∈  ( ℝ  ×  ℝ ) )  | 
						
						
							| 165 | 
							
								
							 | 
							1st2nd2 | 
							⊢ ( ( 𝐺 ‘ 𝑗 )  ∈  ( ℝ  ×  ℝ )  →  ( 𝐺 ‘ 𝑗 )  =  〈 ( 1st  ‘ ( 𝐺 ‘ 𝑗 ) ) ,  ( 2nd  ‘ ( 𝐺 ‘ 𝑗 ) ) 〉 )  | 
						
						
							| 166 | 
							
								164 165
							 | 
							syl | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  ( 𝐺 ‘ 𝑗 )  =  〈 ( 1st  ‘ ( 𝐺 ‘ 𝑗 ) ) ,  ( 2nd  ‘ ( 𝐺 ‘ 𝑗 ) ) 〉 )  | 
						
						
							| 167 | 
							
								166
							 | 
							fveq2d | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) )  =  ( (,) ‘ 〈 ( 1st  ‘ ( 𝐺 ‘ 𝑗 ) ) ,  ( 2nd  ‘ ( 𝐺 ‘ 𝑗 ) ) 〉 ) )  | 
						
						
							| 168 | 
							
								
							 | 
							df-ov | 
							⊢ ( ( 1st  ‘ ( 𝐺 ‘ 𝑗 ) ) (,) ( 2nd  ‘ ( 𝐺 ‘ 𝑗 ) ) )  =  ( (,) ‘ 〈 ( 1st  ‘ ( 𝐺 ‘ 𝑗 ) ) ,  ( 2nd  ‘ ( 𝐺 ‘ 𝑗 ) ) 〉 )  | 
						
						
							| 169 | 
							
								167 168
							 | 
							eqtr4di | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) )  =  ( ( 1st  ‘ ( 𝐺 ‘ 𝑗 ) ) (,) ( 2nd  ‘ ( 𝐺 ‘ 𝑗 ) ) ) )  | 
						
						
							| 170 | 
							
								
							 | 
							ioombl | 
							⊢ ( ( 1st  ‘ ( 𝐺 ‘ 𝑗 ) ) (,) ( 2nd  ‘ ( 𝐺 ‘ 𝑗 ) ) )  ∈  dom  vol  | 
						
						
							| 171 | 
							
								169 170
							 | 
							eqeltrdi | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) )  ∈  dom  vol )  | 
						
						
							| 172 | 
							
								171
							 | 
							adantr | 
							⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  ∧  𝑖  ∈  ( 1 ... 𝑁 ) )  →  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) )  ∈  dom  vol )  | 
						
						
							| 173 | 
							
								
							 | 
							inmbl | 
							⊢ ( ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∈  dom  vol  ∧  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) )  ∈  dom  vol )  →  ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) )  ∈  dom  vol )  | 
						
						
							| 174 | 
							
								161 172 173
							 | 
							syl2anc | 
							⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  ∧  𝑖  ∈  ( 1 ... 𝑁 ) )  →  ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) )  ∈  dom  vol )  | 
						
						
							| 175 | 
							
								174
							 | 
							ralrimiva | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) )  ∈  dom  vol )  | 
						
						
							| 176 | 
							
								
							 | 
							finiunmbl | 
							⊢ ( ( ( 1 ... 𝑁 )  ∈  Fin  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) )  ∈  dom  vol )  →  ∪  𝑖  ∈  ( 1 ... 𝑁 ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) )  ∈  dom  vol )  | 
						
						
							| 177 | 
							
								150 175 176
							 | 
							syl2anc | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  ∪  𝑖  ∈  ( 1 ... 𝑁 ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) )  ∈  dom  vol )  | 
						
						
							| 178 | 
							
								149 177
							 | 
							eqeltrd | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) )  ∩  𝐿 )  ∈  dom  vol )  | 
						
						
							| 179 | 
							
								
							 | 
							inss2 | 
							⊢ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) )  ∩  𝐴 )  ⊆  𝐴  | 
						
						
							| 180 | 
							
								1
							 | 
							uniiccdif | 
							⊢ ( 𝜑  →  ( ∪  ran  ( (,)  ∘  𝐹 )  ⊆  ∪  ran  ( [,]  ∘  𝐹 )  ∧  ( vol* ‘ ( ∪  ran  ( [,]  ∘  𝐹 )  ∖  ∪  ran  ( (,)  ∘  𝐹 ) ) )  =  0 ) )  | 
						
						
							| 181 | 
							
								180
							 | 
							simpld | 
							⊢ ( 𝜑  →  ∪  ran  ( (,)  ∘  𝐹 )  ⊆  ∪  ran  ( [,]  ∘  𝐹 ) )  | 
						
						
							| 182 | 
							
								
							 | 
							ovolficcss | 
							⊢ ( 𝐹 : ℕ ⟶ (  ≤   ∩  ( ℝ  ×  ℝ ) )  →  ∪  ran  ( [,]  ∘  𝐹 )  ⊆  ℝ )  | 
						
						
							| 183 | 
							
								1 182
							 | 
							syl | 
							⊢ ( 𝜑  →  ∪  ran  ( [,]  ∘  𝐹 )  ⊆  ℝ )  | 
						
						
							| 184 | 
							
								181 183
							 | 
							sstrd | 
							⊢ ( 𝜑  →  ∪  ran  ( (,)  ∘  𝐹 )  ⊆  ℝ )  | 
						
						
							| 185 | 
							
								4 184
							 | 
							eqsstrid | 
							⊢ ( 𝜑  →  𝐴  ⊆  ℝ )  | 
						
						
							| 186 | 
							
								185
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  𝐴  ⊆  ℝ )  | 
						
						
							| 187 | 
							
								179 186
							 | 
							sstrid | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) )  ∩  𝐴 )  ⊆  ℝ )  | 
						
						
							| 188 | 
							
								
							 | 
							inss1 | 
							⊢ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) )  ∩  𝐴 )  ⊆  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) )  | 
						
						
							| 189 | 
							
								
							 | 
							ioossre | 
							⊢ ( ( 1st  ‘ ( 𝐺 ‘ 𝑗 ) ) (,) ( 2nd  ‘ ( 𝐺 ‘ 𝑗 ) ) )  ⊆  ℝ  | 
						
						
							| 190 | 
							
								169 189
							 | 
							eqsstrdi | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) )  ⊆  ℝ )  | 
						
						
							| 191 | 
							
								169
							 | 
							fveq2d | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  ( vol* ‘ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) )  =  ( vol* ‘ ( ( 1st  ‘ ( 𝐺 ‘ 𝑗 ) ) (,) ( 2nd  ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) )  | 
						
						
							| 192 | 
							
								
							 | 
							ovolfcl | 
							⊢ ( ( 𝐺 : ℕ ⟶ (  ≤   ∩  ( ℝ  ×  ℝ ) )  ∧  𝑗  ∈  ℕ )  →  ( ( 1st  ‘ ( 𝐺 ‘ 𝑗 ) )  ∈  ℝ  ∧  ( 2nd  ‘ ( 𝐺 ‘ 𝑗 ) )  ∈  ℝ  ∧  ( 1st  ‘ ( 𝐺 ‘ 𝑗 ) )  ≤  ( 2nd  ‘ ( 𝐺 ‘ 𝑗 ) ) ) )  | 
						
						
							| 193 | 
							
								7 93 192
							 | 
							syl2an | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  ( ( 1st  ‘ ( 𝐺 ‘ 𝑗 ) )  ∈  ℝ  ∧  ( 2nd  ‘ ( 𝐺 ‘ 𝑗 ) )  ∈  ℝ  ∧  ( 1st  ‘ ( 𝐺 ‘ 𝑗 ) )  ≤  ( 2nd  ‘ ( 𝐺 ‘ 𝑗 ) ) ) )  | 
						
						
							| 194 | 
							
								
							 | 
							ovolioo | 
							⊢ ( ( ( 1st  ‘ ( 𝐺 ‘ 𝑗 ) )  ∈  ℝ  ∧  ( 2nd  ‘ ( 𝐺 ‘ 𝑗 ) )  ∈  ℝ  ∧  ( 1st  ‘ ( 𝐺 ‘ 𝑗 ) )  ≤  ( 2nd  ‘ ( 𝐺 ‘ 𝑗 ) ) )  →  ( vol* ‘ ( ( 1st  ‘ ( 𝐺 ‘ 𝑗 ) ) (,) ( 2nd  ‘ ( 𝐺 ‘ 𝑗 ) ) ) )  =  ( ( 2nd  ‘ ( 𝐺 ‘ 𝑗 ) )  −  ( 1st  ‘ ( 𝐺 ‘ 𝑗 ) ) ) )  | 
						
						
							| 195 | 
							
								193 194
							 | 
							syl | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  ( vol* ‘ ( ( 1st  ‘ ( 𝐺 ‘ 𝑗 ) ) (,) ( 2nd  ‘ ( 𝐺 ‘ 𝑗 ) ) ) )  =  ( ( 2nd  ‘ ( 𝐺 ‘ 𝑗 ) )  −  ( 1st  ‘ ( 𝐺 ‘ 𝑗 ) ) ) )  | 
						
						
							| 196 | 
							
								191 195
							 | 
							eqtrd | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  ( vol* ‘ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) )  =  ( ( 2nd  ‘ ( 𝐺 ‘ 𝑗 ) )  −  ( 1st  ‘ ( 𝐺 ‘ 𝑗 ) ) ) )  | 
						
						
							| 197 | 
							
								193
							 | 
							simp2d | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  ( 2nd  ‘ ( 𝐺 ‘ 𝑗 ) )  ∈  ℝ )  | 
						
						
							| 198 | 
							
								193
							 | 
							simp1d | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  ( 1st  ‘ ( 𝐺 ‘ 𝑗 ) )  ∈  ℝ )  | 
						
						
							| 199 | 
							
								197 198
							 | 
							resubcld | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  ( ( 2nd  ‘ ( 𝐺 ‘ 𝑗 ) )  −  ( 1st  ‘ ( 𝐺 ‘ 𝑗 ) ) )  ∈  ℝ )  | 
						
						
							| 200 | 
							
								196 199
							 | 
							eqeltrd | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  ( vol* ‘ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) )  ∈  ℝ )  | 
						
						
							| 201 | 
							
								
							 | 
							ovolsscl | 
							⊢ ( ( ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) )  ∩  𝐴 )  ⊆  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) )  ∧  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) )  ⊆  ℝ  ∧  ( vol* ‘ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) )  ∈  ℝ )  →  ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) )  ∩  𝐴 ) )  ∈  ℝ )  | 
						
						
							| 202 | 
							
								188 190 200 201
							 | 
							mp3an2i | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) )  ∩  𝐴 ) )  ∈  ℝ )  | 
						
						
							| 203 | 
							
								
							 | 
							mblsplit | 
							⊢ ( ( ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) )  ∩  𝐿 )  ∈  dom  vol  ∧  ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) )  ∩  𝐴 )  ⊆  ℝ  ∧  ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) )  ∩  𝐴 ) )  ∈  ℝ )  →  ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) )  ∩  𝐴 ) )  =  ( ( vol* ‘ ( ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) )  ∩  𝐴 )  ∩  ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) )  ∩  𝐿 ) ) )  +  ( vol* ‘ ( ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) )  ∩  𝐴 )  ∖  ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) )  ∩  𝐿 ) ) ) ) )  | 
						
						
							| 204 | 
							
								178 187 202 203
							 | 
							syl3anc | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) )  ∩  𝐴 ) )  =  ( ( vol* ‘ ( ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) )  ∩  𝐴 )  ∩  ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) )  ∩  𝐿 ) ) )  +  ( vol* ‘ ( ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) )  ∩  𝐴 )  ∖  ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) )  ∩  𝐿 ) ) ) ) )  | 
						
						
							| 205 | 
							
								
							 | 
							imassrn | 
							⊢ ( ( (,)  ∘  𝐹 )  “  ( 1 ... 𝑁 ) )  ⊆  ran  ( (,)  ∘  𝐹 )  | 
						
						
							| 206 | 
							
								205
							 | 
							unissi | 
							⊢ ∪  ( ( (,)  ∘  𝐹 )  “  ( 1 ... 𝑁 ) )  ⊆  ∪  ran  ( (,)  ∘  𝐹 )  | 
						
						
							| 207 | 
							
								206 16 4
							 | 
							3sstr4i | 
							⊢ 𝐿  ⊆  𝐴  | 
						
						
							| 208 | 
							
								
							 | 
							sslin | 
							⊢ ( 𝐿  ⊆  𝐴  →  ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) )  ∩  𝐿 )  ⊆  ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) )  ∩  𝐴 ) )  | 
						
						
							| 209 | 
							
								207 208
							 | 
							mp1i | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) )  ∩  𝐿 )  ⊆  ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) )  ∩  𝐴 ) )  | 
						
						
							| 210 | 
							
								
							 | 
							sseqin2 | 
							⊢ ( ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) )  ∩  𝐿 )  ⊆  ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) )  ∩  𝐴 )  ↔  ( ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) )  ∩  𝐴 )  ∩  ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) )  ∩  𝐿 ) )  =  ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) )  ∩  𝐿 ) )  | 
						
						
							| 211 | 
							
								209 210
							 | 
							sylib | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  ( ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) )  ∩  𝐴 )  ∩  ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) )  ∩  𝐿 ) )  =  ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) )  ∩  𝐿 ) )  | 
						
						
							| 212 | 
							
								211
							 | 
							fveq2d | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  ( vol* ‘ ( ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) )  ∩  𝐴 )  ∩  ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) )  ∩  𝐿 ) ) )  =  ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) )  ∩  𝐿 ) ) )  | 
						
						
							| 213 | 
							
								
							 | 
							indifdir | 
							⊢ ( ( 𝐴  ∖  𝐿 )  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) )  =  ( ( 𝐴  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) )  ∖  ( 𝐿  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) )  | 
						
						
							| 214 | 
							
								
							 | 
							incom | 
							⊢ ( 𝐴  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) )  =  ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) )  ∩  𝐴 )  | 
						
						
							| 215 | 
							
								
							 | 
							incom | 
							⊢ ( 𝐿  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) )  =  ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) )  ∩  𝐿 )  | 
						
						
							| 216 | 
							
								214 215
							 | 
							difeq12i | 
							⊢ ( ( 𝐴  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) )  ∖  ( 𝐿  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) )  =  ( ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) )  ∩  𝐴 )  ∖  ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) )  ∩  𝐿 ) )  | 
						
						
							| 217 | 
							
								213 216
							 | 
							eqtri | 
							⊢ ( ( 𝐴  ∖  𝐿 )  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) )  =  ( ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) )  ∩  𝐴 )  ∖  ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) )  ∩  𝐿 ) )  | 
						
						
							| 218 | 
							
								82
							 | 
							eqcomd | 
							⊢ ( 𝜑  →  ( 𝐿  ∪  ∪  𝑖  ∈  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) )  =  𝐴 )  | 
						
						
							| 219 | 
							
								80
							 | 
							ineq1d | 
							⊢ ( 𝜑  →  ( 𝐿  ∩  ∪  𝑖  ∈  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) )  =  ( ∪  𝑖  ∈  ( 1 ... 𝑁 ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∩  ∪  𝑖  ∈  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ) )  | 
						
						
							| 220 | 
							
								
							 | 
							2fveq3 | 
							⊢ ( 𝑥  =  𝑖  →  ( (,) ‘ ( 𝐹 ‘ 𝑥 ) )  =  ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) )  | 
						
						
							| 221 | 
							
								220
							 | 
							cbvdisjv | 
							⊢ ( Disj  𝑥  ∈  ℕ ( (,) ‘ ( 𝐹 ‘ 𝑥 ) )  ↔  Disj  𝑖  ∈  ℕ ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) )  | 
						
						
							| 222 | 
							
								2 221
							 | 
							sylib | 
							⊢ ( 𝜑  →  Disj  𝑖  ∈  ℕ ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) )  | 
						
						
							| 223 | 
							
								
							 | 
							fz1ssnn | 
							⊢ ( 1 ... 𝑁 )  ⊆  ℕ  | 
						
						
							| 224 | 
							
								223
							 | 
							a1i | 
							⊢ ( 𝜑  →  ( 1 ... 𝑁 )  ⊆  ℕ )  | 
						
						
							| 225 | 
							
								
							 | 
							uzss | 
							⊢ ( ( 𝑁  +  1 )  ∈  ( ℤ≥ ‘ 1 )  →  ( ℤ≥ ‘ ( 𝑁  +  1 ) )  ⊆  ( ℤ≥ ‘ 1 ) )  | 
						
						
							| 226 | 
							
								43 225
							 | 
							syl | 
							⊢ ( 𝜑  →  ( ℤ≥ ‘ ( 𝑁  +  1 ) )  ⊆  ( ℤ≥ ‘ 1 ) )  | 
						
						
							| 227 | 
							
								226 41
							 | 
							sseqtrrdi | 
							⊢ ( 𝜑  →  ( ℤ≥ ‘ ( 𝑁  +  1 ) )  ⊆  ℕ )  | 
						
						
							| 228 | 
							
								51
							 | 
							ineq1d | 
							⊢ ( 𝜑  →  ( ( 1 ... ( ( 𝑁  +  1 )  −  1 ) )  ∩  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) )  =  ( ( 1 ... 𝑁 )  ∩  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ) )  | 
						
						
							| 229 | 
							
								
							 | 
							uzdisj | 
							⊢ ( ( 1 ... ( ( 𝑁  +  1 )  −  1 ) )  ∩  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) )  =  ∅  | 
						
						
							| 230 | 
							
								228 229
							 | 
							eqtr3di | 
							⊢ ( 𝜑  →  ( ( 1 ... 𝑁 )  ∩  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) )  =  ∅ )  | 
						
						
							| 231 | 
							
								
							 | 
							disjiun | 
							⊢ ( ( Disj  𝑖  ∈  ℕ ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∧  ( ( 1 ... 𝑁 )  ⊆  ℕ  ∧  ( ℤ≥ ‘ ( 𝑁  +  1 ) )  ⊆  ℕ  ∧  ( ( 1 ... 𝑁 )  ∩  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) )  =  ∅ ) )  →  ( ∪  𝑖  ∈  ( 1 ... 𝑁 ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∩  ∪  𝑖  ∈  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) )  =  ∅ )  | 
						
						
							| 232 | 
							
								222 224 227 230 231
							 | 
							syl13anc | 
							⊢ ( 𝜑  →  ( ∪  𝑖  ∈  ( 1 ... 𝑁 ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∩  ∪  𝑖  ∈  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) )  =  ∅ )  | 
						
						
							| 233 | 
							
								219 232
							 | 
							eqtrd | 
							⊢ ( 𝜑  →  ( 𝐿  ∩  ∪  𝑖  ∈  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) )  =  ∅ )  | 
						
						
							| 234 | 
							
								
							 | 
							uneqdifeq | 
							⊢ ( ( 𝐿  ⊆  𝐴  ∧  ( 𝐿  ∩  ∪  𝑖  ∈  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) )  =  ∅ )  →  ( ( 𝐿  ∪  ∪  𝑖  ∈  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) )  =  𝐴  ↔  ( 𝐴  ∖  𝐿 )  =  ∪  𝑖  ∈  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ) )  | 
						
						
							| 235 | 
							
								207 233 234
							 | 
							sylancr | 
							⊢ ( 𝜑  →  ( ( 𝐿  ∪  ∪  𝑖  ∈  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) )  =  𝐴  ↔  ( 𝐴  ∖  𝐿 )  =  ∪  𝑖  ∈  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ) )  | 
						
						
							| 236 | 
							
								218 235
							 | 
							mpbid | 
							⊢ ( 𝜑  →  ( 𝐴  ∖  𝐿 )  =  ∪  𝑖  ∈  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) )  | 
						
						
							| 237 | 
							
								236
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  ( 𝐴  ∖  𝐿 )  =  ∪  𝑖  ∈  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) )  | 
						
						
							| 238 | 
							
								237
							 | 
							ineq2d | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) )  ∩  ( 𝐴  ∖  𝐿 ) )  =  ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) )  ∩  ∪  𝑖  ∈  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ) )  | 
						
						
							| 239 | 
							
								
							 | 
							incom | 
							⊢ ( ( 𝐴  ∖  𝐿 )  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) )  =  ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) )  ∩  ( 𝐴  ∖  𝐿 ) )  | 
						
						
							| 240 | 
							
								104 101
							 | 
							eqtri | 
							⊢ ∪  𝑖  ∈  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) )  =  ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) )  ∩  ∪  𝑖  ∈  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) )  | 
						
						
							| 241 | 
							
								238 239 240
							 | 
							3eqtr4g | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  ( ( 𝐴  ∖  𝐿 )  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) )  =  ∪  𝑖  ∈  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) )  | 
						
						
							| 242 | 
							
								217 241
							 | 
							eqtr3id | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  ( ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) )  ∩  𝐴 )  ∖  ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) )  ∩  𝐿 ) )  =  ∪  𝑖  ∈  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) )  | 
						
						
							| 243 | 
							
								242
							 | 
							fveq2d | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  ( vol* ‘ ( ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) )  ∩  𝐴 )  ∖  ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) )  ∩  𝐿 ) ) )  =  ( vol* ‘ ∪  𝑖  ∈  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) )  | 
						
						
							| 244 | 
							
								212 243
							 | 
							oveq12d | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  ( ( vol* ‘ ( ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) )  ∩  𝐴 )  ∩  ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) )  ∩  𝐿 ) ) )  +  ( vol* ‘ ( ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) )  ∩  𝐴 )  ∖  ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) )  ∩  𝐿 ) ) ) )  =  ( ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) )  ∩  𝐿 ) )  +  ( vol* ‘ ∪  𝑖  ∈  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ) )  | 
						
						
							| 245 | 
							
								204 244
							 | 
							eqtrd | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) )  ∩  𝐴 ) )  =  ( ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) )  ∩  𝐿 ) )  +  ( vol* ‘ ∪  𝑖  ∈  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ) )  | 
						
						
							| 246 | 
							
								202 142
							 | 
							resubcld | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  ( ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) )  ∩  𝐴 ) )  −  ( 𝐶  /  𝑀 ) )  ∈  ℝ )  | 
						
						
							| 247 | 
							
								
							 | 
							inss2 | 
							⊢ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) )  ⊆  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) )  | 
						
						
							| 248 | 
							
								190
							 | 
							adantr | 
							⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  ∧  𝑖  ∈  ( 1 ... 𝑁 ) )  →  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) )  ⊆  ℝ )  | 
						
						
							| 249 | 
							
								200
							 | 
							adantr | 
							⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  ∧  𝑖  ∈  ( 1 ... 𝑁 ) )  →  ( vol* ‘ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) )  ∈  ℝ )  | 
						
						
							| 250 | 
							
								
							 | 
							ovolsscl | 
							⊢ ( ( ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) )  ⊆  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) )  ∧  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) )  ⊆  ℝ  ∧  ( vol* ‘ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) )  ∈  ℝ )  →  ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) )  ∈  ℝ )  | 
						
						
							| 251 | 
							
								247 248 249 250
							 | 
							mp3an2i | 
							⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  ∧  𝑖  ∈  ( 1 ... 𝑁 ) )  →  ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) )  ∈  ℝ )  | 
						
						
							| 252 | 
							
								150 251
							 | 
							fsumrecl | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  Σ 𝑖  ∈  ( 1 ... 𝑁 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) )  ∈  ℝ )  | 
						
						
							| 253 | 
							
								15
							 | 
							r19.21bi | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  ( abs ‘ ( Σ 𝑖  ∈  ( 1 ... 𝑁 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) )  −  ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) )  ∩  𝐴 ) ) ) )  <  ( 𝐶  /  𝑀 ) )  | 
						
						
							| 254 | 
							
								252 202 142
							 | 
							absdifltd | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  ( ( abs ‘ ( Σ 𝑖  ∈  ( 1 ... 𝑁 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) )  −  ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) )  ∩  𝐴 ) ) ) )  <  ( 𝐶  /  𝑀 )  ↔  ( ( ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) )  ∩  𝐴 ) )  −  ( 𝐶  /  𝑀 ) )  <  Σ 𝑖  ∈  ( 1 ... 𝑁 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) )  ∧  Σ 𝑖  ∈  ( 1 ... 𝑁 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) )  <  ( ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) )  ∩  𝐴 ) )  +  ( 𝐶  /  𝑀 ) ) ) ) )  | 
						
						
							| 255 | 
							
								253 254
							 | 
							mpbid | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  ( ( ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) )  ∩  𝐴 ) )  −  ( 𝐶  /  𝑀 ) )  <  Σ 𝑖  ∈  ( 1 ... 𝑁 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) )  ∧  Σ 𝑖  ∈  ( 1 ... 𝑁 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) )  <  ( ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) )  ∩  𝐴 ) )  +  ( 𝐶  /  𝑀 ) ) ) )  | 
						
						
							| 256 | 
							
								255
							 | 
							simpld | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  ( ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) )  ∩  𝐴 ) )  −  ( 𝐶  /  𝑀 ) )  <  Σ 𝑖  ∈  ( 1 ... 𝑁 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) )  | 
						
						
							| 257 | 
							
								246 252 256
							 | 
							ltled | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  ( ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) )  ∩  𝐴 ) )  −  ( 𝐶  /  𝑀 ) )  ≤  Σ 𝑖  ∈  ( 1 ... 𝑁 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) )  | 
						
						
							| 258 | 
							
								149
							 | 
							fveq2d | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) )  ∩  𝐿 ) )  =  ( vol* ‘ ∪  𝑖  ∈  ( 1 ... 𝑁 ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) )  | 
						
						
							| 259 | 
							
								
							 | 
							mblvol | 
							⊢ ( ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) )  ∈  dom  vol  →  ( vol ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) )  =  ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) )  | 
						
						
							| 260 | 
							
								174 259
							 | 
							syl | 
							⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  ∧  𝑖  ∈  ( 1 ... 𝑁 ) )  →  ( vol ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) )  =  ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) )  | 
						
						
							| 261 | 
							
								260 251
							 | 
							eqeltrd | 
							⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  ∧  𝑖  ∈  ( 1 ... 𝑁 ) )  →  ( vol ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) )  ∈  ℝ )  | 
						
						
							| 262 | 
							
								174 261
							 | 
							jca | 
							⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  ∧  𝑖  ∈  ( 1 ... 𝑁 ) )  →  ( ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) )  ∈  dom  vol  ∧  ( vol ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) )  ∈  ℝ ) )  | 
						
						
							| 263 | 
							
								262
							 | 
							ralrimiva | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) )  ∈  dom  vol  ∧  ( vol ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) )  ∈  ℝ ) )  | 
						
						
							| 264 | 
							
								
							 | 
							inss1 | 
							⊢ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) )  ⊆  ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  | 
						
						
							| 265 | 
							
								264
							 | 
							rgenw | 
							⊢ ∀ 𝑖  ∈  ℕ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) )  ⊆  ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  | 
						
						
							| 266 | 
							
								222
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  Disj  𝑖  ∈  ℕ ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) )  | 
						
						
							| 267 | 
							
								
							 | 
							disjss2 | 
							⊢ ( ∀ 𝑖  ∈  ℕ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) )  ⊆  ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  →  ( Disj  𝑖  ∈  ℕ ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  →  Disj  𝑖  ∈  ℕ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) )  | 
						
						
							| 268 | 
							
								265 266 267
							 | 
							mpsyl | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  Disj  𝑖  ∈  ℕ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) )  | 
						
						
							| 269 | 
							
								
							 | 
							disjss1 | 
							⊢ ( ( 1 ... 𝑁 )  ⊆  ℕ  →  ( Disj  𝑖  ∈  ℕ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) )  →  Disj  𝑖  ∈  ( 1 ... 𝑁 ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) )  | 
						
						
							| 270 | 
							
								223 268 269
							 | 
							mpsyl | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  Disj  𝑖  ∈  ( 1 ... 𝑁 ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) )  | 
						
						
							| 271 | 
							
								
							 | 
							volfiniun | 
							⊢ ( ( ( 1 ... 𝑁 )  ∈  Fin  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) )  ∈  dom  vol  ∧  ( vol ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) )  ∈  ℝ )  ∧  Disj  𝑖  ∈  ( 1 ... 𝑁 ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) )  →  ( vol ‘ ∪  𝑖  ∈  ( 1 ... 𝑁 ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) )  =  Σ 𝑖  ∈  ( 1 ... 𝑁 ) ( vol ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) )  | 
						
						
							| 272 | 
							
								150 263 270 271
							 | 
							syl3anc | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  ( vol ‘ ∪  𝑖  ∈  ( 1 ... 𝑁 ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) )  =  Σ 𝑖  ∈  ( 1 ... 𝑁 ) ( vol ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) )  | 
						
						
							| 273 | 
							
								
							 | 
							mblvol | 
							⊢ ( ∪  𝑖  ∈  ( 1 ... 𝑁 ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) )  ∈  dom  vol  →  ( vol ‘ ∪  𝑖  ∈  ( 1 ... 𝑁 ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) )  =  ( vol* ‘ ∪  𝑖  ∈  ( 1 ... 𝑁 ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) )  | 
						
						
							| 274 | 
							
								177 273
							 | 
							syl | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  ( vol ‘ ∪  𝑖  ∈  ( 1 ... 𝑁 ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) )  =  ( vol* ‘ ∪  𝑖  ∈  ( 1 ... 𝑁 ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) )  | 
						
						
							| 275 | 
							
								260
							 | 
							sumeq2dv | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  Σ 𝑖  ∈  ( 1 ... 𝑁 ) ( vol ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) )  =  Σ 𝑖  ∈  ( 1 ... 𝑁 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) )  | 
						
						
							| 276 | 
							
								272 274 275
							 | 
							3eqtr3d | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  ( vol* ‘ ∪  𝑖  ∈  ( 1 ... 𝑁 ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) )  =  Σ 𝑖  ∈  ( 1 ... 𝑁 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) )  | 
						
						
							| 277 | 
							
								258 276
							 | 
							eqtrd | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) )  ∩  𝐿 ) )  =  Σ 𝑖  ∈  ( 1 ... 𝑁 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) )  | 
						
						
							| 278 | 
							
								257 277
							 | 
							breqtrrd | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  ( ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) )  ∩  𝐴 ) )  −  ( 𝐶  /  𝑀 ) )  ≤  ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) )  ∩  𝐿 ) ) )  | 
						
						
							| 279 | 
							
								277 252
							 | 
							eqeltrd | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) )  ∩  𝐿 ) )  ∈  ℝ )  | 
						
						
							| 280 | 
							
								202 142 279
							 | 
							lesubaddd | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  ( ( ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) )  ∩  𝐴 ) )  −  ( 𝐶  /  𝑀 ) )  ≤  ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) )  ∩  𝐿 ) )  ↔  ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) )  ∩  𝐴 ) )  ≤  ( ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) )  ∩  𝐿 ) )  +  ( 𝐶  /  𝑀 ) ) ) )  | 
						
						
							| 281 | 
							
								278 280
							 | 
							mpbid | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) )  ∩  𝐴 ) )  ≤  ( ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) )  ∩  𝐿 ) )  +  ( 𝐶  /  𝑀 ) ) )  | 
						
						
							| 282 | 
							
								245 281
							 | 
							eqbrtrrd | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  ( ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) )  ∩  𝐿 ) )  +  ( vol* ‘ ∪  𝑖  ∈  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) )  ≤  ( ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) )  ∩  𝐿 ) )  +  ( 𝐶  /  𝑀 ) ) )  | 
						
						
							| 283 | 
							
								134 142 279
							 | 
							leadd2d | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  ( ( vol* ‘ ∪  𝑖  ∈  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) )  ≤  ( 𝐶  /  𝑀 )  ↔  ( ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) )  ∩  𝐿 ) )  +  ( vol* ‘ ∪  𝑖  ∈  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) )  ≤  ( ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) )  ∩  𝐿 ) )  +  ( 𝐶  /  𝑀 ) ) ) )  | 
						
						
							| 284 | 
							
								282 283
							 | 
							mpbird | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  ( vol* ‘ ∪  𝑖  ∈  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) )  ≤  ( 𝐶  /  𝑀 ) )  | 
						
						
							| 285 | 
							
								127 134 142 284
							 | 
							fsumle | 
							⊢ ( 𝜑  →  Σ 𝑗  ∈  ( 1 ... 𝑀 ) ( vol* ‘ ∪  𝑖  ∈  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) )  ≤  Σ 𝑗  ∈  ( 1 ... 𝑀 ) ( 𝐶  /  𝑀 ) )  | 
						
						
							| 286 | 
							
								141
							 | 
							recnd | 
							⊢ ( 𝜑  →  ( 𝐶  /  𝑀 )  ∈  ℂ )  | 
						
						
							| 287 | 
							
								
							 | 
							fsumconst | 
							⊢ ( ( ( 1 ... 𝑀 )  ∈  Fin  ∧  ( 𝐶  /  𝑀 )  ∈  ℂ )  →  Σ 𝑗  ∈  ( 1 ... 𝑀 ) ( 𝐶  /  𝑀 )  =  ( ( ♯ ‘ ( 1 ... 𝑀 ) )  ·  ( 𝐶  /  𝑀 ) ) )  | 
						
						
							| 288 | 
							
								127 286 287
							 | 
							syl2anc | 
							⊢ ( 𝜑  →  Σ 𝑗  ∈  ( 1 ... 𝑀 ) ( 𝐶  /  𝑀 )  =  ( ( ♯ ‘ ( 1 ... 𝑀 ) )  ·  ( 𝐶  /  𝑀 ) ) )  | 
						
						
							| 289 | 
							
								
							 | 
							nnnn0 | 
							⊢ ( 𝑀  ∈  ℕ  →  𝑀  ∈  ℕ0 )  | 
						
						
							| 290 | 
							
								
							 | 
							hashfz1 | 
							⊢ ( 𝑀  ∈  ℕ0  →  ( ♯ ‘ ( 1 ... 𝑀 ) )  =  𝑀 )  | 
						
						
							| 291 | 
							
								11 289 290
							 | 
							3syl | 
							⊢ ( 𝜑  →  ( ♯ ‘ ( 1 ... 𝑀 ) )  =  𝑀 )  | 
						
						
							| 292 | 
							
								291
							 | 
							oveq1d | 
							⊢ ( 𝜑  →  ( ( ♯ ‘ ( 1 ... 𝑀 ) )  ·  ( 𝐶  /  𝑀 ) )  =  ( 𝑀  ·  ( 𝐶  /  𝑀 ) ) )  | 
						
						
							| 293 | 
							
								119
							 | 
							recnd | 
							⊢ ( 𝜑  →  𝐶  ∈  ℂ )  | 
						
						
							| 294 | 
							
								11
							 | 
							nncnd | 
							⊢ ( 𝜑  →  𝑀  ∈  ℂ )  | 
						
						
							| 295 | 
							
								11
							 | 
							nnne0d | 
							⊢ ( 𝜑  →  𝑀  ≠  0 )  | 
						
						
							| 296 | 
							
								293 294 295
							 | 
							divcan2d | 
							⊢ ( 𝜑  →  ( 𝑀  ·  ( 𝐶  /  𝑀 ) )  =  𝐶 )  | 
						
						
							| 297 | 
							
								288 292 296
							 | 
							3eqtrd | 
							⊢ ( 𝜑  →  Σ 𝑗  ∈  ( 1 ... 𝑀 ) ( 𝐶  /  𝑀 )  =  𝐶 )  | 
						
						
							| 298 | 
							
								285 297
							 | 
							breqtrd | 
							⊢ ( 𝜑  →  Σ 𝑗  ∈  ( 1 ... 𝑀 ) ( vol* ‘ ∪  𝑖  ∈  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) )  ≤  𝐶 )  | 
						
						
							| 299 | 
							
								117 135 119 140 298
							 | 
							letrd | 
							⊢ ( 𝜑  →  ( vol* ‘ ∪  𝑗  ∈  ( 1 ... 𝑀 ) ∪  𝑖  ∈  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) )  ≤  𝐶 )  | 
						
						
							| 300 | 
							
								117 119 39 299
							 | 
							leadd2dd | 
							⊢ ( 𝜑  →  ( ( vol* ‘ ( 𝐾  ∩  𝐿 ) )  +  ( vol* ‘ ∪  𝑗  ∈  ( 1 ... 𝑀 ) ∪  𝑖  ∈  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) )  ∩  ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) )  ≤  ( ( vol* ‘ ( 𝐾  ∩  𝐿 ) )  +  𝐶 ) )  | 
						
						
							| 301 | 
							
								36 118 120 126 300
							 | 
							letrd | 
							⊢ ( 𝜑  →  ( vol* ‘ ( 𝐾  ∩  𝐴 ) )  ≤  ( ( vol* ‘ ( 𝐾  ∩  𝐿 ) )  +  𝐶 ) )  |