Step |
Hyp |
Ref |
Expression |
1 |
|
uniioombl.1 |
⊢ ( 𝜑 → 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
2 |
|
uniioombl.2 |
⊢ ( 𝜑 → Disj 𝑥 ∈ ℕ ( (,) ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
3 |
|
uniioombl.3 |
⊢ 𝑆 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐹 ) ) |
4 |
|
ioof |
⊢ (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ |
5 |
|
inss2 |
⊢ ( ≤ ∩ ( ℝ × ℝ ) ) ⊆ ( ℝ × ℝ ) |
6 |
|
rexpssxrxp |
⊢ ( ℝ × ℝ ) ⊆ ( ℝ* × ℝ* ) |
7 |
5 6
|
sstri |
⊢ ( ≤ ∩ ( ℝ × ℝ ) ) ⊆ ( ℝ* × ℝ* ) |
8 |
|
fss |
⊢ ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ ( ≤ ∩ ( ℝ × ℝ ) ) ⊆ ( ℝ* × ℝ* ) ) → 𝐹 : ℕ ⟶ ( ℝ* × ℝ* ) ) |
9 |
1 7 8
|
sylancl |
⊢ ( 𝜑 → 𝐹 : ℕ ⟶ ( ℝ* × ℝ* ) ) |
10 |
|
fco |
⊢ ( ( (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ ∧ 𝐹 : ℕ ⟶ ( ℝ* × ℝ* ) ) → ( (,) ∘ 𝐹 ) : ℕ ⟶ 𝒫 ℝ ) |
11 |
4 9 10
|
sylancr |
⊢ ( 𝜑 → ( (,) ∘ 𝐹 ) : ℕ ⟶ 𝒫 ℝ ) |
12 |
11
|
frnd |
⊢ ( 𝜑 → ran ( (,) ∘ 𝐹 ) ⊆ 𝒫 ℝ ) |
13 |
|
sspwuni |
⊢ ( ran ( (,) ∘ 𝐹 ) ⊆ 𝒫 ℝ ↔ ∪ ran ( (,) ∘ 𝐹 ) ⊆ ℝ ) |
14 |
12 13
|
sylib |
⊢ ( 𝜑 → ∪ ran ( (,) ∘ 𝐹 ) ⊆ ℝ ) |
15 |
|
ovolcl |
⊢ ( ∪ ran ( (,) ∘ 𝐹 ) ⊆ ℝ → ( vol* ‘ ∪ ran ( (,) ∘ 𝐹 ) ) ∈ ℝ* ) |
16 |
14 15
|
syl |
⊢ ( 𝜑 → ( vol* ‘ ∪ ran ( (,) ∘ 𝐹 ) ) ∈ ℝ* ) |
17 |
|
eqid |
⊢ ( ( abs ∘ − ) ∘ 𝐹 ) = ( ( abs ∘ − ) ∘ 𝐹 ) |
18 |
17 3
|
ovolsf |
⊢ ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → 𝑆 : ℕ ⟶ ( 0 [,) +∞ ) ) |
19 |
|
frn |
⊢ ( 𝑆 : ℕ ⟶ ( 0 [,) +∞ ) → ran 𝑆 ⊆ ( 0 [,) +∞ ) ) |
20 |
1 18 19
|
3syl |
⊢ ( 𝜑 → ran 𝑆 ⊆ ( 0 [,) +∞ ) ) |
21 |
|
icossxr |
⊢ ( 0 [,) +∞ ) ⊆ ℝ* |
22 |
20 21
|
sstrdi |
⊢ ( 𝜑 → ran 𝑆 ⊆ ℝ* ) |
23 |
|
supxrcl |
⊢ ( ran 𝑆 ⊆ ℝ* → sup ( ran 𝑆 , ℝ* , < ) ∈ ℝ* ) |
24 |
22 23
|
syl |
⊢ ( 𝜑 → sup ( ran 𝑆 , ℝ* , < ) ∈ ℝ* ) |
25 |
|
ssid |
⊢ ∪ ran ( (,) ∘ 𝐹 ) ⊆ ∪ ran ( (,) ∘ 𝐹 ) |
26 |
3
|
ovollb |
⊢ ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ ∪ ran ( (,) ∘ 𝐹 ) ⊆ ∪ ran ( (,) ∘ 𝐹 ) ) → ( vol* ‘ ∪ ran ( (,) ∘ 𝐹 ) ) ≤ sup ( ran 𝑆 , ℝ* , < ) ) |
27 |
1 25 26
|
sylancl |
⊢ ( 𝜑 → ( vol* ‘ ∪ ran ( (,) ∘ 𝐹 ) ) ≤ sup ( ran 𝑆 , ℝ* , < ) ) |
28 |
3
|
fveq1i |
⊢ ( 𝑆 ‘ 𝑛 ) = ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐹 ) ) ‘ 𝑛 ) |
29 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
30 |
|
elfznn |
⊢ ( 𝑥 ∈ ( 1 ... 𝑛 ) → 𝑥 ∈ ℕ ) |
31 |
17
|
ovolfsval |
⊢ ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝑥 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ 𝑥 ) = ( ( 2nd ‘ ( 𝐹 ‘ 𝑥 ) ) − ( 1st ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) |
32 |
29 30 31
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ( 1 ... 𝑛 ) ) → ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ 𝑥 ) = ( ( 2nd ‘ ( 𝐹 ‘ 𝑥 ) ) − ( 1st ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) |
33 |
|
fvco3 |
⊢ ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝑥 ∈ ℕ ) → ( ( (,) ∘ 𝐹 ) ‘ 𝑥 ) = ( (,) ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
34 |
29 30 33
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ( 1 ... 𝑛 ) ) → ( ( (,) ∘ 𝐹 ) ‘ 𝑥 ) = ( (,) ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
35 |
|
ffvelrn |
⊢ ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝑥 ∈ ℕ ) → ( 𝐹 ‘ 𝑥 ) ∈ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
36 |
29 30 35
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ( 1 ... 𝑛 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
37 |
36
|
elin2d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ( 1 ... 𝑛 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ( ℝ × ℝ ) ) |
38 |
|
1st2nd2 |
⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ ( ℝ × ℝ ) → ( 𝐹 ‘ 𝑥 ) = 〈 ( 1st ‘ ( 𝐹 ‘ 𝑥 ) ) , ( 2nd ‘ ( 𝐹 ‘ 𝑥 ) ) 〉 ) |
39 |
37 38
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ( 1 ... 𝑛 ) ) → ( 𝐹 ‘ 𝑥 ) = 〈 ( 1st ‘ ( 𝐹 ‘ 𝑥 ) ) , ( 2nd ‘ ( 𝐹 ‘ 𝑥 ) ) 〉 ) |
40 |
39
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ( 1 ... 𝑛 ) ) → ( (,) ‘ ( 𝐹 ‘ 𝑥 ) ) = ( (,) ‘ 〈 ( 1st ‘ ( 𝐹 ‘ 𝑥 ) ) , ( 2nd ‘ ( 𝐹 ‘ 𝑥 ) ) 〉 ) ) |
41 |
|
df-ov |
⊢ ( ( 1st ‘ ( 𝐹 ‘ 𝑥 ) ) (,) ( 2nd ‘ ( 𝐹 ‘ 𝑥 ) ) ) = ( (,) ‘ 〈 ( 1st ‘ ( 𝐹 ‘ 𝑥 ) ) , ( 2nd ‘ ( 𝐹 ‘ 𝑥 ) ) 〉 ) |
42 |
40 41
|
eqtr4di |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ( 1 ... 𝑛 ) ) → ( (,) ‘ ( 𝐹 ‘ 𝑥 ) ) = ( ( 1st ‘ ( 𝐹 ‘ 𝑥 ) ) (,) ( 2nd ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) |
43 |
34 42
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ( 1 ... 𝑛 ) ) → ( ( (,) ∘ 𝐹 ) ‘ 𝑥 ) = ( ( 1st ‘ ( 𝐹 ‘ 𝑥 ) ) (,) ( 2nd ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) |
44 |
|
ioombl |
⊢ ( ( 1st ‘ ( 𝐹 ‘ 𝑥 ) ) (,) ( 2nd ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∈ dom vol |
45 |
43 44
|
eqeltrdi |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ( 1 ... 𝑛 ) ) → ( ( (,) ∘ 𝐹 ) ‘ 𝑥 ) ∈ dom vol ) |
46 |
|
mblvol |
⊢ ( ( ( (,) ∘ 𝐹 ) ‘ 𝑥 ) ∈ dom vol → ( vol ‘ ( ( (,) ∘ 𝐹 ) ‘ 𝑥 ) ) = ( vol* ‘ ( ( (,) ∘ 𝐹 ) ‘ 𝑥 ) ) ) |
47 |
45 46
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ( 1 ... 𝑛 ) ) → ( vol ‘ ( ( (,) ∘ 𝐹 ) ‘ 𝑥 ) ) = ( vol* ‘ ( ( (,) ∘ 𝐹 ) ‘ 𝑥 ) ) ) |
48 |
43
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ( 1 ... 𝑛 ) ) → ( vol* ‘ ( ( (,) ∘ 𝐹 ) ‘ 𝑥 ) ) = ( vol* ‘ ( ( 1st ‘ ( 𝐹 ‘ 𝑥 ) ) (,) ( 2nd ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) ) |
49 |
|
ovolfcl |
⊢ ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝑥 ∈ ℕ ) → ( ( 1st ‘ ( 𝐹 ‘ 𝑥 ) ) ∈ ℝ ∧ ( 2nd ‘ ( 𝐹 ‘ 𝑥 ) ) ∈ ℝ ∧ ( 1st ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ ( 2nd ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) |
50 |
29 30 49
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ( 1 ... 𝑛 ) ) → ( ( 1st ‘ ( 𝐹 ‘ 𝑥 ) ) ∈ ℝ ∧ ( 2nd ‘ ( 𝐹 ‘ 𝑥 ) ) ∈ ℝ ∧ ( 1st ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ ( 2nd ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) |
51 |
|
ovolioo |
⊢ ( ( ( 1st ‘ ( 𝐹 ‘ 𝑥 ) ) ∈ ℝ ∧ ( 2nd ‘ ( 𝐹 ‘ 𝑥 ) ) ∈ ℝ ∧ ( 1st ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ ( 2nd ‘ ( 𝐹 ‘ 𝑥 ) ) ) → ( vol* ‘ ( ( 1st ‘ ( 𝐹 ‘ 𝑥 ) ) (,) ( 2nd ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) = ( ( 2nd ‘ ( 𝐹 ‘ 𝑥 ) ) − ( 1st ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) |
52 |
50 51
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ( 1 ... 𝑛 ) ) → ( vol* ‘ ( ( 1st ‘ ( 𝐹 ‘ 𝑥 ) ) (,) ( 2nd ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) = ( ( 2nd ‘ ( 𝐹 ‘ 𝑥 ) ) − ( 1st ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) |
53 |
47 48 52
|
3eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ( 1 ... 𝑛 ) ) → ( vol ‘ ( ( (,) ∘ 𝐹 ) ‘ 𝑥 ) ) = ( ( 2nd ‘ ( 𝐹 ‘ 𝑥 ) ) − ( 1st ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) |
54 |
32 53
|
eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ( 1 ... 𝑛 ) ) → ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ 𝑥 ) = ( vol ‘ ( ( (,) ∘ 𝐹 ) ‘ 𝑥 ) ) ) |
55 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℕ ) |
56 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
57 |
55 56
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ( ℤ≥ ‘ 1 ) ) |
58 |
50
|
simp2d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ( 1 ... 𝑛 ) ) → ( 2nd ‘ ( 𝐹 ‘ 𝑥 ) ) ∈ ℝ ) |
59 |
50
|
simp1d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ( 1 ... 𝑛 ) ) → ( 1st ‘ ( 𝐹 ‘ 𝑥 ) ) ∈ ℝ ) |
60 |
58 59
|
resubcld |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ( 1 ... 𝑛 ) ) → ( ( 2nd ‘ ( 𝐹 ‘ 𝑥 ) ) − ( 1st ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∈ ℝ ) |
61 |
53 60
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ( 1 ... 𝑛 ) ) → ( vol ‘ ( ( (,) ∘ 𝐹 ) ‘ 𝑥 ) ) ∈ ℝ ) |
62 |
61
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ( 1 ... 𝑛 ) ) → ( vol ‘ ( ( (,) ∘ 𝐹 ) ‘ 𝑥 ) ) ∈ ℂ ) |
63 |
54 57 62
|
fsumser |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → Σ 𝑥 ∈ ( 1 ... 𝑛 ) ( vol ‘ ( ( (,) ∘ 𝐹 ) ‘ 𝑥 ) ) = ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐹 ) ) ‘ 𝑛 ) ) |
64 |
28 63
|
eqtr4id |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑆 ‘ 𝑛 ) = Σ 𝑥 ∈ ( 1 ... 𝑛 ) ( vol ‘ ( ( (,) ∘ 𝐹 ) ‘ 𝑥 ) ) ) |
65 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 1 ... 𝑛 ) ∈ Fin ) |
66 |
45 61
|
jca |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ( 1 ... 𝑛 ) ) → ( ( ( (,) ∘ 𝐹 ) ‘ 𝑥 ) ∈ dom vol ∧ ( vol ‘ ( ( (,) ∘ 𝐹 ) ‘ 𝑥 ) ) ∈ ℝ ) ) |
67 |
66
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ∀ 𝑥 ∈ ( 1 ... 𝑛 ) ( ( ( (,) ∘ 𝐹 ) ‘ 𝑥 ) ∈ dom vol ∧ ( vol ‘ ( ( (,) ∘ 𝐹 ) ‘ 𝑥 ) ) ∈ ℝ ) ) |
68 |
|
fz1ssnn |
⊢ ( 1 ... 𝑛 ) ⊆ ℕ |
69 |
1 33
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) → ( ( (,) ∘ 𝐹 ) ‘ 𝑥 ) = ( (,) ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
70 |
69
|
disjeq2dv |
⊢ ( 𝜑 → ( Disj 𝑥 ∈ ℕ ( ( (,) ∘ 𝐹 ) ‘ 𝑥 ) ↔ Disj 𝑥 ∈ ℕ ( (,) ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) |
71 |
2 70
|
mpbird |
⊢ ( 𝜑 → Disj 𝑥 ∈ ℕ ( ( (,) ∘ 𝐹 ) ‘ 𝑥 ) ) |
72 |
71
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → Disj 𝑥 ∈ ℕ ( ( (,) ∘ 𝐹 ) ‘ 𝑥 ) ) |
73 |
|
disjss1 |
⊢ ( ( 1 ... 𝑛 ) ⊆ ℕ → ( Disj 𝑥 ∈ ℕ ( ( (,) ∘ 𝐹 ) ‘ 𝑥 ) → Disj 𝑥 ∈ ( 1 ... 𝑛 ) ( ( (,) ∘ 𝐹 ) ‘ 𝑥 ) ) ) |
74 |
68 72 73
|
mpsyl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → Disj 𝑥 ∈ ( 1 ... 𝑛 ) ( ( (,) ∘ 𝐹 ) ‘ 𝑥 ) ) |
75 |
|
volfiniun |
⊢ ( ( ( 1 ... 𝑛 ) ∈ Fin ∧ ∀ 𝑥 ∈ ( 1 ... 𝑛 ) ( ( ( (,) ∘ 𝐹 ) ‘ 𝑥 ) ∈ dom vol ∧ ( vol ‘ ( ( (,) ∘ 𝐹 ) ‘ 𝑥 ) ) ∈ ℝ ) ∧ Disj 𝑥 ∈ ( 1 ... 𝑛 ) ( ( (,) ∘ 𝐹 ) ‘ 𝑥 ) ) → ( vol ‘ ∪ 𝑥 ∈ ( 1 ... 𝑛 ) ( ( (,) ∘ 𝐹 ) ‘ 𝑥 ) ) = Σ 𝑥 ∈ ( 1 ... 𝑛 ) ( vol ‘ ( ( (,) ∘ 𝐹 ) ‘ 𝑥 ) ) ) |
76 |
65 67 74 75
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( vol ‘ ∪ 𝑥 ∈ ( 1 ... 𝑛 ) ( ( (,) ∘ 𝐹 ) ‘ 𝑥 ) ) = Σ 𝑥 ∈ ( 1 ... 𝑛 ) ( vol ‘ ( ( (,) ∘ 𝐹 ) ‘ 𝑥 ) ) ) |
77 |
45
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ∀ 𝑥 ∈ ( 1 ... 𝑛 ) ( ( (,) ∘ 𝐹 ) ‘ 𝑥 ) ∈ dom vol ) |
78 |
|
finiunmbl |
⊢ ( ( ( 1 ... 𝑛 ) ∈ Fin ∧ ∀ 𝑥 ∈ ( 1 ... 𝑛 ) ( ( (,) ∘ 𝐹 ) ‘ 𝑥 ) ∈ dom vol ) → ∪ 𝑥 ∈ ( 1 ... 𝑛 ) ( ( (,) ∘ 𝐹 ) ‘ 𝑥 ) ∈ dom vol ) |
79 |
65 77 78
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ∪ 𝑥 ∈ ( 1 ... 𝑛 ) ( ( (,) ∘ 𝐹 ) ‘ 𝑥 ) ∈ dom vol ) |
80 |
|
mblvol |
⊢ ( ∪ 𝑥 ∈ ( 1 ... 𝑛 ) ( ( (,) ∘ 𝐹 ) ‘ 𝑥 ) ∈ dom vol → ( vol ‘ ∪ 𝑥 ∈ ( 1 ... 𝑛 ) ( ( (,) ∘ 𝐹 ) ‘ 𝑥 ) ) = ( vol* ‘ ∪ 𝑥 ∈ ( 1 ... 𝑛 ) ( ( (,) ∘ 𝐹 ) ‘ 𝑥 ) ) ) |
81 |
79 80
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( vol ‘ ∪ 𝑥 ∈ ( 1 ... 𝑛 ) ( ( (,) ∘ 𝐹 ) ‘ 𝑥 ) ) = ( vol* ‘ ∪ 𝑥 ∈ ( 1 ... 𝑛 ) ( ( (,) ∘ 𝐹 ) ‘ 𝑥 ) ) ) |
82 |
64 76 81
|
3eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑆 ‘ 𝑛 ) = ( vol* ‘ ∪ 𝑥 ∈ ( 1 ... 𝑛 ) ( ( (,) ∘ 𝐹 ) ‘ 𝑥 ) ) ) |
83 |
|
iunss1 |
⊢ ( ( 1 ... 𝑛 ) ⊆ ℕ → ∪ 𝑥 ∈ ( 1 ... 𝑛 ) ( ( (,) ∘ 𝐹 ) ‘ 𝑥 ) ⊆ ∪ 𝑥 ∈ ℕ ( ( (,) ∘ 𝐹 ) ‘ 𝑥 ) ) |
84 |
68 83
|
mp1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ∪ 𝑥 ∈ ( 1 ... 𝑛 ) ( ( (,) ∘ 𝐹 ) ‘ 𝑥 ) ⊆ ∪ 𝑥 ∈ ℕ ( ( (,) ∘ 𝐹 ) ‘ 𝑥 ) ) |
85 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( (,) ∘ 𝐹 ) : ℕ ⟶ 𝒫 ℝ ) |
86 |
|
ffn |
⊢ ( ( (,) ∘ 𝐹 ) : ℕ ⟶ 𝒫 ℝ → ( (,) ∘ 𝐹 ) Fn ℕ ) |
87 |
|
fniunfv |
⊢ ( ( (,) ∘ 𝐹 ) Fn ℕ → ∪ 𝑥 ∈ ℕ ( ( (,) ∘ 𝐹 ) ‘ 𝑥 ) = ∪ ran ( (,) ∘ 𝐹 ) ) |
88 |
85 86 87
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ∪ 𝑥 ∈ ℕ ( ( (,) ∘ 𝐹 ) ‘ 𝑥 ) = ∪ ran ( (,) ∘ 𝐹 ) ) |
89 |
84 88
|
sseqtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ∪ 𝑥 ∈ ( 1 ... 𝑛 ) ( ( (,) ∘ 𝐹 ) ‘ 𝑥 ) ⊆ ∪ ran ( (,) ∘ 𝐹 ) ) |
90 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ∪ ran ( (,) ∘ 𝐹 ) ⊆ ℝ ) |
91 |
|
ovolss |
⊢ ( ( ∪ 𝑥 ∈ ( 1 ... 𝑛 ) ( ( (,) ∘ 𝐹 ) ‘ 𝑥 ) ⊆ ∪ ran ( (,) ∘ 𝐹 ) ∧ ∪ ran ( (,) ∘ 𝐹 ) ⊆ ℝ ) → ( vol* ‘ ∪ 𝑥 ∈ ( 1 ... 𝑛 ) ( ( (,) ∘ 𝐹 ) ‘ 𝑥 ) ) ≤ ( vol* ‘ ∪ ran ( (,) ∘ 𝐹 ) ) ) |
92 |
89 90 91
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( vol* ‘ ∪ 𝑥 ∈ ( 1 ... 𝑛 ) ( ( (,) ∘ 𝐹 ) ‘ 𝑥 ) ) ≤ ( vol* ‘ ∪ ran ( (,) ∘ 𝐹 ) ) ) |
93 |
82 92
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑆 ‘ 𝑛 ) ≤ ( vol* ‘ ∪ ran ( (,) ∘ 𝐹 ) ) ) |
94 |
93
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑛 ∈ ℕ ( 𝑆 ‘ 𝑛 ) ≤ ( vol* ‘ ∪ ran ( (,) ∘ 𝐹 ) ) ) |
95 |
1 18
|
syl |
⊢ ( 𝜑 → 𝑆 : ℕ ⟶ ( 0 [,) +∞ ) ) |
96 |
|
ffn |
⊢ ( 𝑆 : ℕ ⟶ ( 0 [,) +∞ ) → 𝑆 Fn ℕ ) |
97 |
|
breq1 |
⊢ ( 𝑦 = ( 𝑆 ‘ 𝑛 ) → ( 𝑦 ≤ ( vol* ‘ ∪ ran ( (,) ∘ 𝐹 ) ) ↔ ( 𝑆 ‘ 𝑛 ) ≤ ( vol* ‘ ∪ ran ( (,) ∘ 𝐹 ) ) ) ) |
98 |
97
|
ralrn |
⊢ ( 𝑆 Fn ℕ → ( ∀ 𝑦 ∈ ran 𝑆 𝑦 ≤ ( vol* ‘ ∪ ran ( (,) ∘ 𝐹 ) ) ↔ ∀ 𝑛 ∈ ℕ ( 𝑆 ‘ 𝑛 ) ≤ ( vol* ‘ ∪ ran ( (,) ∘ 𝐹 ) ) ) ) |
99 |
95 96 98
|
3syl |
⊢ ( 𝜑 → ( ∀ 𝑦 ∈ ran 𝑆 𝑦 ≤ ( vol* ‘ ∪ ran ( (,) ∘ 𝐹 ) ) ↔ ∀ 𝑛 ∈ ℕ ( 𝑆 ‘ 𝑛 ) ≤ ( vol* ‘ ∪ ran ( (,) ∘ 𝐹 ) ) ) ) |
100 |
94 99
|
mpbird |
⊢ ( 𝜑 → ∀ 𝑦 ∈ ran 𝑆 𝑦 ≤ ( vol* ‘ ∪ ran ( (,) ∘ 𝐹 ) ) ) |
101 |
|
supxrleub |
⊢ ( ( ran 𝑆 ⊆ ℝ* ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝐹 ) ) ∈ ℝ* ) → ( sup ( ran 𝑆 , ℝ* , < ) ≤ ( vol* ‘ ∪ ran ( (,) ∘ 𝐹 ) ) ↔ ∀ 𝑦 ∈ ran 𝑆 𝑦 ≤ ( vol* ‘ ∪ ran ( (,) ∘ 𝐹 ) ) ) ) |
102 |
22 16 101
|
syl2anc |
⊢ ( 𝜑 → ( sup ( ran 𝑆 , ℝ* , < ) ≤ ( vol* ‘ ∪ ran ( (,) ∘ 𝐹 ) ) ↔ ∀ 𝑦 ∈ ran 𝑆 𝑦 ≤ ( vol* ‘ ∪ ran ( (,) ∘ 𝐹 ) ) ) ) |
103 |
100 102
|
mpbird |
⊢ ( 𝜑 → sup ( ran 𝑆 , ℝ* , < ) ≤ ( vol* ‘ ∪ ran ( (,) ∘ 𝐹 ) ) ) |
104 |
16 24 27 103
|
xrletrid |
⊢ ( 𝜑 → ( vol* ‘ ∪ ran ( (,) ∘ 𝐹 ) ) = sup ( ran 𝑆 , ℝ* , < ) ) |