Metamath Proof Explorer


Theorem uniiun

Description: Class union in terms of indexed union. Definition in Stoll p. 43. (Contributed by NM, 28-Jun-1998)

Ref Expression
Assertion uniiun 𝐴 = 𝑥𝐴 𝑥

Proof

Step Hyp Ref Expression
1 dfuni2 𝐴 = { 𝑦 ∣ ∃ 𝑥𝐴 𝑦𝑥 }
2 df-iun 𝑥𝐴 𝑥 = { 𝑦 ∣ ∃ 𝑥𝐴 𝑦𝑥 }
3 1 2 eqtr4i 𝐴 = 𝑥𝐴 𝑥