Metamath Proof Explorer


Theorem uniiunlem

Description: A subset relationship useful for converting union to indexed union using dfiun2 or dfiun2g and intersection to indexed intersection using dfiin2 . (Contributed by NM, 5-Oct-2006) (Proof shortened by Mario Carneiro, 26-Sep-2015)

Ref Expression
Assertion uniiunlem ( ∀ 𝑥𝐴 𝐵𝐷 → ( ∀ 𝑥𝐴 𝐵𝐶 ↔ { 𝑦 ∣ ∃ 𝑥𝐴 𝑦 = 𝐵 } ⊆ 𝐶 ) )

Proof

Step Hyp Ref Expression
1 eqeq1 ( 𝑦 = 𝑧 → ( 𝑦 = 𝐵𝑧 = 𝐵 ) )
2 1 rexbidv ( 𝑦 = 𝑧 → ( ∃ 𝑥𝐴 𝑦 = 𝐵 ↔ ∃ 𝑥𝐴 𝑧 = 𝐵 ) )
3 2 cbvabv { 𝑦 ∣ ∃ 𝑥𝐴 𝑦 = 𝐵 } = { 𝑧 ∣ ∃ 𝑥𝐴 𝑧 = 𝐵 }
4 3 sseq1i ( { 𝑦 ∣ ∃ 𝑥𝐴 𝑦 = 𝐵 } ⊆ 𝐶 ↔ { 𝑧 ∣ ∃ 𝑥𝐴 𝑧 = 𝐵 } ⊆ 𝐶 )
5 r19.23v ( ∀ 𝑥𝐴 ( 𝑧 = 𝐵𝑧𝐶 ) ↔ ( ∃ 𝑥𝐴 𝑧 = 𝐵𝑧𝐶 ) )
6 5 albii ( ∀ 𝑧𝑥𝐴 ( 𝑧 = 𝐵𝑧𝐶 ) ↔ ∀ 𝑧 ( ∃ 𝑥𝐴 𝑧 = 𝐵𝑧𝐶 ) )
7 ralcom4 ( ∀ 𝑥𝐴𝑧 ( 𝑧 = 𝐵𝑧𝐶 ) ↔ ∀ 𝑧𝑥𝐴 ( 𝑧 = 𝐵𝑧𝐶 ) )
8 abss ( { 𝑧 ∣ ∃ 𝑥𝐴 𝑧 = 𝐵 } ⊆ 𝐶 ↔ ∀ 𝑧 ( ∃ 𝑥𝐴 𝑧 = 𝐵𝑧𝐶 ) )
9 6 7 8 3bitr4i ( ∀ 𝑥𝐴𝑧 ( 𝑧 = 𝐵𝑧𝐶 ) ↔ { 𝑧 ∣ ∃ 𝑥𝐴 𝑧 = 𝐵 } ⊆ 𝐶 )
10 4 9 bitr4i ( { 𝑦 ∣ ∃ 𝑥𝐴 𝑦 = 𝐵 } ⊆ 𝐶 ↔ ∀ 𝑥𝐴𝑧 ( 𝑧 = 𝐵𝑧𝐶 ) )
11 nfv 𝑧 𝐵𝐶
12 eleq1 ( 𝑧 = 𝐵 → ( 𝑧𝐶𝐵𝐶 ) )
13 11 12 ceqsalg ( 𝐵𝐷 → ( ∀ 𝑧 ( 𝑧 = 𝐵𝑧𝐶 ) ↔ 𝐵𝐶 ) )
14 13 ralimi ( ∀ 𝑥𝐴 𝐵𝐷 → ∀ 𝑥𝐴 ( ∀ 𝑧 ( 𝑧 = 𝐵𝑧𝐶 ) ↔ 𝐵𝐶 ) )
15 ralbi ( ∀ 𝑥𝐴 ( ∀ 𝑧 ( 𝑧 = 𝐵𝑧𝐶 ) ↔ 𝐵𝐶 ) → ( ∀ 𝑥𝐴𝑧 ( 𝑧 = 𝐵𝑧𝐶 ) ↔ ∀ 𝑥𝐴 𝐵𝐶 ) )
16 14 15 syl ( ∀ 𝑥𝐴 𝐵𝐷 → ( ∀ 𝑥𝐴𝑧 ( 𝑧 = 𝐵𝑧𝐶 ) ↔ ∀ 𝑥𝐴 𝐵𝐶 ) )
17 10 16 syl5rbb ( ∀ 𝑥𝐴 𝐵𝐷 → ( ∀ 𝑥𝐴 𝐵𝐶 ↔ { 𝑦 ∣ ∃ 𝑥𝐴 𝑦 = 𝐵 } ⊆ 𝐶 ) )