| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqeq1 |
⊢ ( 𝑦 = 𝑧 → ( 𝑦 = 𝐵 ↔ 𝑧 = 𝐵 ) ) |
| 2 |
1
|
rexbidv |
⊢ ( 𝑦 = 𝑧 → ( ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 ↔ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 ) ) |
| 3 |
2
|
cbvabv |
⊢ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } = { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } |
| 4 |
3
|
sseq1i |
⊢ ( { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ⊆ 𝐶 ↔ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } ⊆ 𝐶 ) |
| 5 |
|
r19.23v |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝑧 = 𝐵 → 𝑧 ∈ 𝐶 ) ↔ ( ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 → 𝑧 ∈ 𝐶 ) ) |
| 6 |
5
|
albii |
⊢ ( ∀ 𝑧 ∀ 𝑥 ∈ 𝐴 ( 𝑧 = 𝐵 → 𝑧 ∈ 𝐶 ) ↔ ∀ 𝑧 ( ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 → 𝑧 ∈ 𝐶 ) ) |
| 7 |
|
ralcom4 |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑧 ( 𝑧 = 𝐵 → 𝑧 ∈ 𝐶 ) ↔ ∀ 𝑧 ∀ 𝑥 ∈ 𝐴 ( 𝑧 = 𝐵 → 𝑧 ∈ 𝐶 ) ) |
| 8 |
|
abss |
⊢ ( { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } ⊆ 𝐶 ↔ ∀ 𝑧 ( ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 → 𝑧 ∈ 𝐶 ) ) |
| 9 |
6 7 8
|
3bitr4i |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑧 ( 𝑧 = 𝐵 → 𝑧 ∈ 𝐶 ) ↔ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } ⊆ 𝐶 ) |
| 10 |
4 9
|
bitr4i |
⊢ ( { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ⊆ 𝐶 ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑧 ( 𝑧 = 𝐵 → 𝑧 ∈ 𝐶 ) ) |
| 11 |
|
nfv |
⊢ Ⅎ 𝑧 𝐵 ∈ 𝐶 |
| 12 |
|
eleq1 |
⊢ ( 𝑧 = 𝐵 → ( 𝑧 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶 ) ) |
| 13 |
11 12
|
ceqsalg |
⊢ ( 𝐵 ∈ 𝐷 → ( ∀ 𝑧 ( 𝑧 = 𝐵 → 𝑧 ∈ 𝐶 ) ↔ 𝐵 ∈ 𝐶 ) ) |
| 14 |
13
|
ralimi |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐷 → ∀ 𝑥 ∈ 𝐴 ( ∀ 𝑧 ( 𝑧 = 𝐵 → 𝑧 ∈ 𝐶 ) ↔ 𝐵 ∈ 𝐶 ) ) |
| 15 |
|
ralbi |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( ∀ 𝑧 ( 𝑧 = 𝐵 → 𝑧 ∈ 𝐶 ) ↔ 𝐵 ∈ 𝐶 ) → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑧 ( 𝑧 = 𝐵 → 𝑧 ∈ 𝐶 ) ↔ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 ) ) |
| 16 |
14 15
|
syl |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐷 → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑧 ( 𝑧 = 𝐵 → 𝑧 ∈ 𝐶 ) ↔ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 ) ) |
| 17 |
10 16
|
bitr2id |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐷 → ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 ↔ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ⊆ 𝐶 ) ) |