Metamath Proof Explorer


Theorem uniixp

Description: The union of an infinite Cartesian product is included in a Cartesian product. (Contributed by NM, 28-Sep-2006) (Revised by Mario Carneiro, 24-Jun-2015)

Ref Expression
Assertion uniixp X 𝑥𝐴 𝐵 ⊆ ( 𝐴 × 𝑥𝐴 𝐵 )

Proof

Step Hyp Ref Expression
1 ixpf ( 𝑓X 𝑥𝐴 𝐵𝑓 : 𝐴 𝑥𝐴 𝐵 )
2 fssxp ( 𝑓 : 𝐴 𝑥𝐴 𝐵𝑓 ⊆ ( 𝐴 × 𝑥𝐴 𝐵 ) )
3 1 2 syl ( 𝑓X 𝑥𝐴 𝐵𝑓 ⊆ ( 𝐴 × 𝑥𝐴 𝐵 ) )
4 velpw ( 𝑓 ∈ 𝒫 ( 𝐴 × 𝑥𝐴 𝐵 ) ↔ 𝑓 ⊆ ( 𝐴 × 𝑥𝐴 𝐵 ) )
5 3 4 sylibr ( 𝑓X 𝑥𝐴 𝐵𝑓 ∈ 𝒫 ( 𝐴 × 𝑥𝐴 𝐵 ) )
6 5 ssriv X 𝑥𝐴 𝐵 ⊆ 𝒫 ( 𝐴 × 𝑥𝐴 𝐵 )
7 sspwuni ( X 𝑥𝐴 𝐵 ⊆ 𝒫 ( 𝐴 × 𝑥𝐴 𝐵 ) ↔ X 𝑥𝐴 𝐵 ⊆ ( 𝐴 × 𝑥𝐴 𝐵 ) )
8 6 7 mpbi X 𝑥𝐴 𝐵 ⊆ ( 𝐴 × 𝑥𝐴 𝐵 )