Metamath Proof Explorer


Theorem unilbeu

Description: Existential uniqueness of the greatest lower bound. (Contributed by Zhi Wang, 29-Sep-2024)

Ref Expression
Assertion unilbeu ( 𝐶𝐵 → ( ( 𝐶𝐴 ∧ ∀ 𝑦𝐵 ( 𝑦𝐴𝑦𝐶 ) ) ↔ 𝐶 = { 𝑥𝐵𝑥𝐴 } ) )

Proof

Step Hyp Ref Expression
1 sseq1 ( 𝑧 = 𝐶 → ( 𝑧𝐴𝐶𝐴 ) )
2 simpll ( ( ( 𝐶𝐵𝐶𝐴 ) ∧ ∀ 𝑦𝐵 ( 𝑦𝐴𝑦𝐶 ) ) → 𝐶𝐵 )
3 simplr ( ( ( 𝐶𝐵𝐶𝐴 ) ∧ ∀ 𝑦𝐵 ( 𝑦𝐴𝑦𝐶 ) ) → 𝐶𝐴 )
4 1 2 3 elrabd ( ( ( 𝐶𝐵𝐶𝐴 ) ∧ ∀ 𝑦𝐵 ( 𝑦𝐴𝑦𝐶 ) ) → 𝐶 ∈ { 𝑧𝐵𝑧𝐴 } )
5 sseq1 ( 𝑧 = 𝑥 → ( 𝑧𝐴𝑥𝐴 ) )
6 5 cbvrabv { 𝑧𝐵𝑧𝐴 } = { 𝑥𝐵𝑥𝐴 }
7 4 6 eleqtrdi ( ( ( 𝐶𝐵𝐶𝐴 ) ∧ ∀ 𝑦𝐵 ( 𝑦𝐴𝑦𝐶 ) ) → 𝐶 ∈ { 𝑥𝐵𝑥𝐴 } )
8 elssuni ( 𝐶 ∈ { 𝑥𝐵𝑥𝐴 } → 𝐶 { 𝑥𝐵𝑥𝐴 } )
9 7 8 syl ( ( ( 𝐶𝐵𝐶𝐴 ) ∧ ∀ 𝑦𝐵 ( 𝑦𝐴𝑦𝐶 ) ) → 𝐶 { 𝑥𝐵𝑥𝐴 } )
10 unissb ( { 𝑥𝐵𝑥𝐴 } ⊆ 𝐶 ↔ ∀ 𝑦 ∈ { 𝑥𝐵𝑥𝐴 } 𝑦𝐶 )
11 sseq1 ( 𝑥 = 𝑦 → ( 𝑥𝐴𝑦𝐴 ) )
12 11 ralrab ( ∀ 𝑦 ∈ { 𝑥𝐵𝑥𝐴 } 𝑦𝐶 ↔ ∀ 𝑦𝐵 ( 𝑦𝐴𝑦𝐶 ) )
13 10 12 bitri ( { 𝑥𝐵𝑥𝐴 } ⊆ 𝐶 ↔ ∀ 𝑦𝐵 ( 𝑦𝐴𝑦𝐶 ) )
14 13 biimpri ( ∀ 𝑦𝐵 ( 𝑦𝐴𝑦𝐶 ) → { 𝑥𝐵𝑥𝐴 } ⊆ 𝐶 )
15 14 adantl ( ( ( 𝐶𝐵𝐶𝐴 ) ∧ ∀ 𝑦𝐵 ( 𝑦𝐴𝑦𝐶 ) ) → { 𝑥𝐵𝑥𝐴 } ⊆ 𝐶 )
16 9 15 eqssd ( ( ( 𝐶𝐵𝐶𝐴 ) ∧ ∀ 𝑦𝐵 ( 𝑦𝐴𝑦𝐶 ) ) → 𝐶 = { 𝑥𝐵𝑥𝐴 } )
17 16 expl ( 𝐶𝐵 → ( ( 𝐶𝐴 ∧ ∀ 𝑦𝐵 ( 𝑦𝐴𝑦𝐶 ) ) → 𝐶 = { 𝑥𝐵𝑥𝐴 } ) )
18 unilbss { 𝑥𝐵𝑥𝐴 } ⊆ 𝐴
19 sseq1 ( 𝐶 = { 𝑥𝐵𝑥𝐴 } → ( 𝐶𝐴 { 𝑥𝐵𝑥𝐴 } ⊆ 𝐴 ) )
20 18 19 mpbiri ( 𝐶 = { 𝑥𝐵𝑥𝐴 } → 𝐶𝐴 )
21 eqimss2 ( 𝐶 = { 𝑥𝐵𝑥𝐴 } → { 𝑥𝐵𝑥𝐴 } ⊆ 𝐶 )
22 21 13 sylib ( 𝐶 = { 𝑥𝐵𝑥𝐴 } → ∀ 𝑦𝐵 ( 𝑦𝐴𝑦𝐶 ) )
23 20 22 jca ( 𝐶 = { 𝑥𝐵𝑥𝐴 } → ( 𝐶𝐴 ∧ ∀ 𝑦𝐵 ( 𝑦𝐴𝑦𝐶 ) ) )
24 17 23 impbid1 ( 𝐶𝐵 → ( ( 𝐶𝐴 ∧ ∀ 𝑦𝐵 ( 𝑦𝐴𝑦𝐶 ) ) ↔ 𝐶 = { 𝑥𝐵𝑥𝐴 } ) )