Step |
Hyp |
Ref |
Expression |
1 |
|
sseq1 |
⊢ ( 𝑧 = 𝐶 → ( 𝑧 ⊆ 𝐴 ↔ 𝐶 ⊆ 𝐴 ) ) |
2 |
|
simpll |
⊢ ( ( ( 𝐶 ∈ 𝐵 ∧ 𝐶 ⊆ 𝐴 ) ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑦 ⊆ 𝐴 → 𝑦 ⊆ 𝐶 ) ) → 𝐶 ∈ 𝐵 ) |
3 |
|
simplr |
⊢ ( ( ( 𝐶 ∈ 𝐵 ∧ 𝐶 ⊆ 𝐴 ) ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑦 ⊆ 𝐴 → 𝑦 ⊆ 𝐶 ) ) → 𝐶 ⊆ 𝐴 ) |
4 |
1 2 3
|
elrabd |
⊢ ( ( ( 𝐶 ∈ 𝐵 ∧ 𝐶 ⊆ 𝐴 ) ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑦 ⊆ 𝐴 → 𝑦 ⊆ 𝐶 ) ) → 𝐶 ∈ { 𝑧 ∈ 𝐵 ∣ 𝑧 ⊆ 𝐴 } ) |
5 |
|
sseq1 |
⊢ ( 𝑧 = 𝑥 → ( 𝑧 ⊆ 𝐴 ↔ 𝑥 ⊆ 𝐴 ) ) |
6 |
5
|
cbvrabv |
⊢ { 𝑧 ∈ 𝐵 ∣ 𝑧 ⊆ 𝐴 } = { 𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴 } |
7 |
4 6
|
eleqtrdi |
⊢ ( ( ( 𝐶 ∈ 𝐵 ∧ 𝐶 ⊆ 𝐴 ) ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑦 ⊆ 𝐴 → 𝑦 ⊆ 𝐶 ) ) → 𝐶 ∈ { 𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴 } ) |
8 |
|
elssuni |
⊢ ( 𝐶 ∈ { 𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴 } → 𝐶 ⊆ ∪ { 𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴 } ) |
9 |
7 8
|
syl |
⊢ ( ( ( 𝐶 ∈ 𝐵 ∧ 𝐶 ⊆ 𝐴 ) ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑦 ⊆ 𝐴 → 𝑦 ⊆ 𝐶 ) ) → 𝐶 ⊆ ∪ { 𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴 } ) |
10 |
|
unissb |
⊢ ( ∪ { 𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴 } ⊆ 𝐶 ↔ ∀ 𝑦 ∈ { 𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴 } 𝑦 ⊆ 𝐶 ) |
11 |
|
sseq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ⊆ 𝐴 ↔ 𝑦 ⊆ 𝐴 ) ) |
12 |
11
|
ralrab |
⊢ ( ∀ 𝑦 ∈ { 𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴 } 𝑦 ⊆ 𝐶 ↔ ∀ 𝑦 ∈ 𝐵 ( 𝑦 ⊆ 𝐴 → 𝑦 ⊆ 𝐶 ) ) |
13 |
10 12
|
bitri |
⊢ ( ∪ { 𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴 } ⊆ 𝐶 ↔ ∀ 𝑦 ∈ 𝐵 ( 𝑦 ⊆ 𝐴 → 𝑦 ⊆ 𝐶 ) ) |
14 |
13
|
biimpri |
⊢ ( ∀ 𝑦 ∈ 𝐵 ( 𝑦 ⊆ 𝐴 → 𝑦 ⊆ 𝐶 ) → ∪ { 𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴 } ⊆ 𝐶 ) |
15 |
14
|
adantl |
⊢ ( ( ( 𝐶 ∈ 𝐵 ∧ 𝐶 ⊆ 𝐴 ) ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑦 ⊆ 𝐴 → 𝑦 ⊆ 𝐶 ) ) → ∪ { 𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴 } ⊆ 𝐶 ) |
16 |
9 15
|
eqssd |
⊢ ( ( ( 𝐶 ∈ 𝐵 ∧ 𝐶 ⊆ 𝐴 ) ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑦 ⊆ 𝐴 → 𝑦 ⊆ 𝐶 ) ) → 𝐶 = ∪ { 𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴 } ) |
17 |
16
|
expl |
⊢ ( 𝐶 ∈ 𝐵 → ( ( 𝐶 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑦 ⊆ 𝐴 → 𝑦 ⊆ 𝐶 ) ) → 𝐶 = ∪ { 𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴 } ) ) |
18 |
|
unilbss |
⊢ ∪ { 𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴 } ⊆ 𝐴 |
19 |
|
sseq1 |
⊢ ( 𝐶 = ∪ { 𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴 } → ( 𝐶 ⊆ 𝐴 ↔ ∪ { 𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴 } ⊆ 𝐴 ) ) |
20 |
18 19
|
mpbiri |
⊢ ( 𝐶 = ∪ { 𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴 } → 𝐶 ⊆ 𝐴 ) |
21 |
|
eqimss2 |
⊢ ( 𝐶 = ∪ { 𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴 } → ∪ { 𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴 } ⊆ 𝐶 ) |
22 |
21 13
|
sylib |
⊢ ( 𝐶 = ∪ { 𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴 } → ∀ 𝑦 ∈ 𝐵 ( 𝑦 ⊆ 𝐴 → 𝑦 ⊆ 𝐶 ) ) |
23 |
20 22
|
jca |
⊢ ( 𝐶 = ∪ { 𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴 } → ( 𝐶 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑦 ⊆ 𝐴 → 𝑦 ⊆ 𝐶 ) ) ) |
24 |
17 23
|
impbid1 |
⊢ ( 𝐶 ∈ 𝐵 → ( ( 𝐶 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑦 ⊆ 𝐴 → 𝑦 ⊆ 𝐶 ) ) ↔ 𝐶 = ∪ { 𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴 } ) ) |