Description: Superclass of the greatest lower bound. A dual statement of ssintub . (Contributed by Zhi Wang, 29-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | unilbss | ⊢ ∪ { 𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴 } ⊆ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unissb | ⊢ ( ∪ { 𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴 } ⊆ 𝐴 ↔ ∀ 𝑦 ∈ { 𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴 } 𝑦 ⊆ 𝐴 ) | |
| 2 | sseq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ⊆ 𝐴 ↔ 𝑦 ⊆ 𝐴 ) ) | |
| 3 | 2 | elrab | ⊢ ( 𝑦 ∈ { 𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴 } ↔ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ⊆ 𝐴 ) ) |
| 4 | 3 | simprbi | ⊢ ( 𝑦 ∈ { 𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴 } → 𝑦 ⊆ 𝐴 ) |
| 5 | 1 4 | mprgbir | ⊢ ∪ { 𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴 } ⊆ 𝐴 |