Metamath Proof Explorer


Theorem unilbss

Description: Superclass of the greatest lower bound. A dual statement of ssintub . (Contributed by Zhi Wang, 29-Sep-2024)

Ref Expression
Assertion unilbss { 𝑥𝐵𝑥𝐴 } ⊆ 𝐴

Proof

Step Hyp Ref Expression
1 unissb ( { 𝑥𝐵𝑥𝐴 } ⊆ 𝐴 ↔ ∀ 𝑦 ∈ { 𝑥𝐵𝑥𝐴 } 𝑦𝐴 )
2 sseq1 ( 𝑥 = 𝑦 → ( 𝑥𝐴𝑦𝐴 ) )
3 2 elrab ( 𝑦 ∈ { 𝑥𝐵𝑥𝐴 } ↔ ( 𝑦𝐵𝑦𝐴 ) )
4 3 simprbi ( 𝑦 ∈ { 𝑥𝐵𝑥𝐴 } → 𝑦𝐴 )
5 1 4 mprgbir { 𝑥𝐵𝑥𝐴 } ⊆ 𝐴