| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ssid | ⊢ 𝐴  ⊆  𝐴 | 
						
							| 2 |  | sseq1 | ⊢ ( 𝑥  =  𝐴  →  ( 𝑥  ⊆  𝐴  ↔  𝐴  ⊆  𝐴 ) ) | 
						
							| 3 | 2 | elrab3 | ⊢ ( 𝐴  ∈  𝐵  →  ( 𝐴  ∈  { 𝑥  ∈  𝐵  ∣  𝑥  ⊆  𝐴 }  ↔  𝐴  ⊆  𝐴 ) ) | 
						
							| 4 | 1 3 | mpbiri | ⊢ ( 𝐴  ∈  𝐵  →  𝐴  ∈  { 𝑥  ∈  𝐵  ∣  𝑥  ⊆  𝐴 } ) | 
						
							| 5 |  | sseq1 | ⊢ ( 𝑥  =  𝑦  →  ( 𝑥  ⊆  𝐴  ↔  𝑦  ⊆  𝐴 ) ) | 
						
							| 6 | 5 | elrab | ⊢ ( 𝑦  ∈  { 𝑥  ∈  𝐵  ∣  𝑥  ⊆  𝐴 }  ↔  ( 𝑦  ∈  𝐵  ∧  𝑦  ⊆  𝐴 ) ) | 
						
							| 7 | 6 | simprbi | ⊢ ( 𝑦  ∈  { 𝑥  ∈  𝐵  ∣  𝑥  ⊆  𝐴 }  →  𝑦  ⊆  𝐴 ) | 
						
							| 8 | 7 | rgen | ⊢ ∀ 𝑦  ∈  { 𝑥  ∈  𝐵  ∣  𝑥  ⊆  𝐴 } 𝑦  ⊆  𝐴 | 
						
							| 9 |  | ssunieq | ⊢ ( ( 𝐴  ∈  { 𝑥  ∈  𝐵  ∣  𝑥  ⊆  𝐴 }  ∧  ∀ 𝑦  ∈  { 𝑥  ∈  𝐵  ∣  𝑥  ⊆  𝐴 } 𝑦  ⊆  𝐴 )  →  𝐴  =  ∪  { 𝑥  ∈  𝐵  ∣  𝑥  ⊆  𝐴 } ) | 
						
							| 10 | 9 | eqcomd | ⊢ ( ( 𝐴  ∈  { 𝑥  ∈  𝐵  ∣  𝑥  ⊆  𝐴 }  ∧  ∀ 𝑦  ∈  { 𝑥  ∈  𝐵  ∣  𝑥  ⊆  𝐴 } 𝑦  ⊆  𝐴 )  →  ∪  { 𝑥  ∈  𝐵  ∣  𝑥  ⊆  𝐴 }  =  𝐴 ) | 
						
							| 11 | 4 8 10 | sylancl | ⊢ ( 𝐴  ∈  𝐵  →  ∪  { 𝑥  ∈  𝐵  ∣  𝑥  ⊆  𝐴 }  =  𝐴 ) |