| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eleq2 | ⊢ ( ( 𝐴  ∩  𝐶 )  =  ( 𝐵  ∩  𝐶 )  →  ( 𝑥  ∈  ( 𝐴  ∩  𝐶 )  ↔  𝑥  ∈  ( 𝐵  ∩  𝐶 ) ) ) | 
						
							| 2 |  | elin | ⊢ ( 𝑥  ∈  ( 𝐴  ∩  𝐶 )  ↔  ( 𝑥  ∈  𝐴  ∧  𝑥  ∈  𝐶 ) ) | 
						
							| 3 |  | elin | ⊢ ( 𝑥  ∈  ( 𝐵  ∩  𝐶 )  ↔  ( 𝑥  ∈  𝐵  ∧  𝑥  ∈  𝐶 ) ) | 
						
							| 4 | 1 2 3 | 3bitr3g | ⊢ ( ( 𝐴  ∩  𝐶 )  =  ( 𝐵  ∩  𝐶 )  →  ( ( 𝑥  ∈  𝐴  ∧  𝑥  ∈  𝐶 )  ↔  ( 𝑥  ∈  𝐵  ∧  𝑥  ∈  𝐶 ) ) ) | 
						
							| 5 |  | iba | ⊢ ( 𝑥  ∈  𝐶  →  ( 𝑥  ∈  𝐴  ↔  ( 𝑥  ∈  𝐴  ∧  𝑥  ∈  𝐶 ) ) ) | 
						
							| 6 |  | iba | ⊢ ( 𝑥  ∈  𝐶  →  ( 𝑥  ∈  𝐵  ↔  ( 𝑥  ∈  𝐵  ∧  𝑥  ∈  𝐶 ) ) ) | 
						
							| 7 | 5 6 | bibi12d | ⊢ ( 𝑥  ∈  𝐶  →  ( ( 𝑥  ∈  𝐴  ↔  𝑥  ∈  𝐵 )  ↔  ( ( 𝑥  ∈  𝐴  ∧  𝑥  ∈  𝐶 )  ↔  ( 𝑥  ∈  𝐵  ∧  𝑥  ∈  𝐶 ) ) ) ) | 
						
							| 8 | 4 7 | imbitrrid | ⊢ ( 𝑥  ∈  𝐶  →  ( ( 𝐴  ∩  𝐶 )  =  ( 𝐵  ∩  𝐶 )  →  ( 𝑥  ∈  𝐴  ↔  𝑥  ∈  𝐵 ) ) ) | 
						
							| 9 | 8 | adantld | ⊢ ( 𝑥  ∈  𝐶  →  ( ( ( 𝐴  ∪  𝐶 )  =  ( 𝐵  ∪  𝐶 )  ∧  ( 𝐴  ∩  𝐶 )  =  ( 𝐵  ∩  𝐶 ) )  →  ( 𝑥  ∈  𝐴  ↔  𝑥  ∈  𝐵 ) ) ) | 
						
							| 10 |  | uncom | ⊢ ( 𝐴  ∪  𝐶 )  =  ( 𝐶  ∪  𝐴 ) | 
						
							| 11 |  | uncom | ⊢ ( 𝐵  ∪  𝐶 )  =  ( 𝐶  ∪  𝐵 ) | 
						
							| 12 | 10 11 | eqeq12i | ⊢ ( ( 𝐴  ∪  𝐶 )  =  ( 𝐵  ∪  𝐶 )  ↔  ( 𝐶  ∪  𝐴 )  =  ( 𝐶  ∪  𝐵 ) ) | 
						
							| 13 |  | eleq2 | ⊢ ( ( 𝐶  ∪  𝐴 )  =  ( 𝐶  ∪  𝐵 )  →  ( 𝑥  ∈  ( 𝐶  ∪  𝐴 )  ↔  𝑥  ∈  ( 𝐶  ∪  𝐵 ) ) ) | 
						
							| 14 | 12 13 | sylbi | ⊢ ( ( 𝐴  ∪  𝐶 )  =  ( 𝐵  ∪  𝐶 )  →  ( 𝑥  ∈  ( 𝐶  ∪  𝐴 )  ↔  𝑥  ∈  ( 𝐶  ∪  𝐵 ) ) ) | 
						
							| 15 |  | elun | ⊢ ( 𝑥  ∈  ( 𝐶  ∪  𝐴 )  ↔  ( 𝑥  ∈  𝐶  ∨  𝑥  ∈  𝐴 ) ) | 
						
							| 16 |  | elun | ⊢ ( 𝑥  ∈  ( 𝐶  ∪  𝐵 )  ↔  ( 𝑥  ∈  𝐶  ∨  𝑥  ∈  𝐵 ) ) | 
						
							| 17 | 14 15 16 | 3bitr3g | ⊢ ( ( 𝐴  ∪  𝐶 )  =  ( 𝐵  ∪  𝐶 )  →  ( ( 𝑥  ∈  𝐶  ∨  𝑥  ∈  𝐴 )  ↔  ( 𝑥  ∈  𝐶  ∨  𝑥  ∈  𝐵 ) ) ) | 
						
							| 18 |  | biorf | ⊢ ( ¬  𝑥  ∈  𝐶  →  ( 𝑥  ∈  𝐴  ↔  ( 𝑥  ∈  𝐶  ∨  𝑥  ∈  𝐴 ) ) ) | 
						
							| 19 |  | biorf | ⊢ ( ¬  𝑥  ∈  𝐶  →  ( 𝑥  ∈  𝐵  ↔  ( 𝑥  ∈  𝐶  ∨  𝑥  ∈  𝐵 ) ) ) | 
						
							| 20 | 18 19 | bibi12d | ⊢ ( ¬  𝑥  ∈  𝐶  →  ( ( 𝑥  ∈  𝐴  ↔  𝑥  ∈  𝐵 )  ↔  ( ( 𝑥  ∈  𝐶  ∨  𝑥  ∈  𝐴 )  ↔  ( 𝑥  ∈  𝐶  ∨  𝑥  ∈  𝐵 ) ) ) ) | 
						
							| 21 | 17 20 | imbitrrid | ⊢ ( ¬  𝑥  ∈  𝐶  →  ( ( 𝐴  ∪  𝐶 )  =  ( 𝐵  ∪  𝐶 )  →  ( 𝑥  ∈  𝐴  ↔  𝑥  ∈  𝐵 ) ) ) | 
						
							| 22 | 21 | adantrd | ⊢ ( ¬  𝑥  ∈  𝐶  →  ( ( ( 𝐴  ∪  𝐶 )  =  ( 𝐵  ∪  𝐶 )  ∧  ( 𝐴  ∩  𝐶 )  =  ( 𝐵  ∩  𝐶 ) )  →  ( 𝑥  ∈  𝐴  ↔  𝑥  ∈  𝐵 ) ) ) | 
						
							| 23 | 9 22 | pm2.61i | ⊢ ( ( ( 𝐴  ∪  𝐶 )  =  ( 𝐵  ∪  𝐶 )  ∧  ( 𝐴  ∩  𝐶 )  =  ( 𝐵  ∩  𝐶 ) )  →  ( 𝑥  ∈  𝐴  ↔  𝑥  ∈  𝐵 ) ) | 
						
							| 24 | 23 | eqrdv | ⊢ ( ( ( 𝐴  ∪  𝐶 )  =  ( 𝐵  ∪  𝐶 )  ∧  ( 𝐴  ∩  𝐶 )  =  ( 𝐵  ∩  𝐶 ) )  →  𝐴  =  𝐵 ) | 
						
							| 25 |  | uneq1 | ⊢ ( 𝐴  =  𝐵  →  ( 𝐴  ∪  𝐶 )  =  ( 𝐵  ∪  𝐶 ) ) | 
						
							| 26 |  | ineq1 | ⊢ ( 𝐴  =  𝐵  →  ( 𝐴  ∩  𝐶 )  =  ( 𝐵  ∩  𝐶 ) ) | 
						
							| 27 | 25 26 | jca | ⊢ ( 𝐴  =  𝐵  →  ( ( 𝐴  ∪  𝐶 )  =  ( 𝐵  ∪  𝐶 )  ∧  ( 𝐴  ∩  𝐶 )  =  ( 𝐵  ∩  𝐶 ) ) ) | 
						
							| 28 | 24 27 | impbii | ⊢ ( ( ( 𝐴  ∪  𝐶 )  =  ( 𝐵  ∪  𝐶 )  ∧  ( 𝐴  ∩  𝐶 )  =  ( 𝐵  ∩  𝐶 ) )  ↔  𝐴  =  𝐵 ) |