| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eleq2 |
⊢ ( ( 𝐴 ∩ 𝐶 ) = ( 𝐵 ∩ 𝐶 ) → ( 𝑥 ∈ ( 𝐴 ∩ 𝐶 ) ↔ 𝑥 ∈ ( 𝐵 ∩ 𝐶 ) ) ) |
| 2 |
|
elin |
⊢ ( 𝑥 ∈ ( 𝐴 ∩ 𝐶 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐶 ) ) |
| 3 |
|
elin |
⊢ ( 𝑥 ∈ ( 𝐵 ∩ 𝐶 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶 ) ) |
| 4 |
1 2 3
|
3bitr3g |
⊢ ( ( 𝐴 ∩ 𝐶 ) = ( 𝐵 ∩ 𝐶 ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐶 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶 ) ) ) |
| 5 |
|
iba |
⊢ ( 𝑥 ∈ 𝐶 → ( 𝑥 ∈ 𝐴 ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐶 ) ) ) |
| 6 |
|
iba |
⊢ ( 𝑥 ∈ 𝐶 → ( 𝑥 ∈ 𝐵 ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶 ) ) ) |
| 7 |
5 6
|
bibi12d |
⊢ ( 𝑥 ∈ 𝐶 → ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐶 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶 ) ) ) ) |
| 8 |
4 7
|
imbitrrid |
⊢ ( 𝑥 ∈ 𝐶 → ( ( 𝐴 ∩ 𝐶 ) = ( 𝐵 ∩ 𝐶 ) → ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ) ) |
| 9 |
8
|
adantld |
⊢ ( 𝑥 ∈ 𝐶 → ( ( ( 𝐴 ∪ 𝐶 ) = ( 𝐵 ∪ 𝐶 ) ∧ ( 𝐴 ∩ 𝐶 ) = ( 𝐵 ∩ 𝐶 ) ) → ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ) ) |
| 10 |
|
uncom |
⊢ ( 𝐴 ∪ 𝐶 ) = ( 𝐶 ∪ 𝐴 ) |
| 11 |
|
uncom |
⊢ ( 𝐵 ∪ 𝐶 ) = ( 𝐶 ∪ 𝐵 ) |
| 12 |
10 11
|
eqeq12i |
⊢ ( ( 𝐴 ∪ 𝐶 ) = ( 𝐵 ∪ 𝐶 ) ↔ ( 𝐶 ∪ 𝐴 ) = ( 𝐶 ∪ 𝐵 ) ) |
| 13 |
|
eleq2 |
⊢ ( ( 𝐶 ∪ 𝐴 ) = ( 𝐶 ∪ 𝐵 ) → ( 𝑥 ∈ ( 𝐶 ∪ 𝐴 ) ↔ 𝑥 ∈ ( 𝐶 ∪ 𝐵 ) ) ) |
| 14 |
12 13
|
sylbi |
⊢ ( ( 𝐴 ∪ 𝐶 ) = ( 𝐵 ∪ 𝐶 ) → ( 𝑥 ∈ ( 𝐶 ∪ 𝐴 ) ↔ 𝑥 ∈ ( 𝐶 ∪ 𝐵 ) ) ) |
| 15 |
|
elun |
⊢ ( 𝑥 ∈ ( 𝐶 ∪ 𝐴 ) ↔ ( 𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐴 ) ) |
| 16 |
|
elun |
⊢ ( 𝑥 ∈ ( 𝐶 ∪ 𝐵 ) ↔ ( 𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐵 ) ) |
| 17 |
14 15 16
|
3bitr3g |
⊢ ( ( 𝐴 ∪ 𝐶 ) = ( 𝐵 ∪ 𝐶 ) → ( ( 𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐴 ) ↔ ( 𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐵 ) ) ) |
| 18 |
|
biorf |
⊢ ( ¬ 𝑥 ∈ 𝐶 → ( 𝑥 ∈ 𝐴 ↔ ( 𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐴 ) ) ) |
| 19 |
|
biorf |
⊢ ( ¬ 𝑥 ∈ 𝐶 → ( 𝑥 ∈ 𝐵 ↔ ( 𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐵 ) ) ) |
| 20 |
18 19
|
bibi12d |
⊢ ( ¬ 𝑥 ∈ 𝐶 → ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ↔ ( ( 𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐴 ) ↔ ( 𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐵 ) ) ) ) |
| 21 |
17 20
|
imbitrrid |
⊢ ( ¬ 𝑥 ∈ 𝐶 → ( ( 𝐴 ∪ 𝐶 ) = ( 𝐵 ∪ 𝐶 ) → ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ) ) |
| 22 |
21
|
adantrd |
⊢ ( ¬ 𝑥 ∈ 𝐶 → ( ( ( 𝐴 ∪ 𝐶 ) = ( 𝐵 ∪ 𝐶 ) ∧ ( 𝐴 ∩ 𝐶 ) = ( 𝐵 ∩ 𝐶 ) ) → ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ) ) |
| 23 |
9 22
|
pm2.61i |
⊢ ( ( ( 𝐴 ∪ 𝐶 ) = ( 𝐵 ∪ 𝐶 ) ∧ ( 𝐴 ∩ 𝐶 ) = ( 𝐵 ∩ 𝐶 ) ) → ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ) |
| 24 |
23
|
eqrdv |
⊢ ( ( ( 𝐴 ∪ 𝐶 ) = ( 𝐵 ∪ 𝐶 ) ∧ ( 𝐴 ∩ 𝐶 ) = ( 𝐵 ∩ 𝐶 ) ) → 𝐴 = 𝐵 ) |
| 25 |
|
uneq1 |
⊢ ( 𝐴 = 𝐵 → ( 𝐴 ∪ 𝐶 ) = ( 𝐵 ∪ 𝐶 ) ) |
| 26 |
|
ineq1 |
⊢ ( 𝐴 = 𝐵 → ( 𝐴 ∩ 𝐶 ) = ( 𝐵 ∩ 𝐶 ) ) |
| 27 |
25 26
|
jca |
⊢ ( 𝐴 = 𝐵 → ( ( 𝐴 ∪ 𝐶 ) = ( 𝐵 ∪ 𝐶 ) ∧ ( 𝐴 ∩ 𝐶 ) = ( 𝐵 ∩ 𝐶 ) ) ) |
| 28 |
24 27
|
impbii |
⊢ ( ( ( 𝐴 ∪ 𝐶 ) = ( 𝐵 ∪ 𝐶 ) ∧ ( 𝐴 ∩ 𝐶 ) = ( 𝐵 ∩ 𝐶 ) ) ↔ 𝐴 = 𝐵 ) |