Metamath Proof Explorer


Theorem uniop

Description: The union of an ordered pair. Theorem 65 of Suppes p. 39. (Contributed by NM, 17-Aug-2004) (Revised by Mario Carneiro, 26-Apr-2015)

Ref Expression
Hypotheses opthw.1 𝐴 ∈ V
opthw.2 𝐵 ∈ V
Assertion uniop 𝐴 , 𝐵 ⟩ = { 𝐴 , 𝐵 }

Proof

Step Hyp Ref Expression
1 opthw.1 𝐴 ∈ V
2 opthw.2 𝐵 ∈ V
3 1 2 dfop 𝐴 , 𝐵 ⟩ = { { 𝐴 } , { 𝐴 , 𝐵 } }
4 3 unieqi 𝐴 , 𝐵 ⟩ = { { 𝐴 } , { 𝐴 , 𝐵 } }
5 snex { 𝐴 } ∈ V
6 prex { 𝐴 , 𝐵 } ∈ V
7 5 6 unipr { { 𝐴 } , { 𝐴 , 𝐵 } } = ( { 𝐴 } ∪ { 𝐴 , 𝐵 } )
8 snsspr1 { 𝐴 } ⊆ { 𝐴 , 𝐵 }
9 ssequn1 ( { 𝐴 } ⊆ { 𝐴 , 𝐵 } ↔ ( { 𝐴 } ∪ { 𝐴 , 𝐵 } ) = { 𝐴 , 𝐵 } )
10 8 9 mpbi ( { 𝐴 } ∪ { 𝐴 , 𝐵 } ) = { 𝐴 , 𝐵 }
11 4 7 10 3eqtri 𝐴 , 𝐵 ⟩ = { 𝐴 , 𝐵 }