Metamath Proof Explorer


Theorem uniopel

Description: Ordered pair membership is inherited by class union. (Contributed by NM, 13-May-2008) (Revised by Mario Carneiro, 26-Apr-2015)

Ref Expression
Hypotheses opthw.1 𝐴 ∈ V
opthw.2 𝐵 ∈ V
Assertion uniopel ( ⟨ 𝐴 , 𝐵 ⟩ ∈ 𝐶𝐴 , 𝐵 ⟩ ∈ 𝐶 )

Proof

Step Hyp Ref Expression
1 opthw.1 𝐴 ∈ V
2 opthw.2 𝐵 ∈ V
3 1 2 uniop 𝐴 , 𝐵 ⟩ = { 𝐴 , 𝐵 }
4 1 2 opi2 { 𝐴 , 𝐵 } ∈ ⟨ 𝐴 , 𝐵
5 3 4 eqeltri 𝐴 , 𝐵 ⟩ ∈ ⟨ 𝐴 , 𝐵
6 elssuni ( ⟨ 𝐴 , 𝐵 ⟩ ∈ 𝐶 → ⟨ 𝐴 , 𝐵 ⟩ ⊆ 𝐶 )
7 6 sseld ( ⟨ 𝐴 , 𝐵 ⟩ ∈ 𝐶 → ( 𝐴 , 𝐵 ⟩ ∈ ⟨ 𝐴 , 𝐵 ⟩ → 𝐴 , 𝐵 ⟩ ∈ 𝐶 ) )
8 5 7 mpi ( ⟨ 𝐴 , 𝐵 ⟩ ∈ 𝐶𝐴 , 𝐵 ⟩ ∈ 𝐶 )