Description: Ordered pair membership is inherited by class union. (Contributed by NM, 13-May-2008) (Revised by Mario Carneiro, 26-Apr-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | opthw.1 | ⊢ 𝐴 ∈ V | |
opthw.2 | ⊢ 𝐵 ∈ V | ||
Assertion | uniopel | ⊢ ( ⟨ 𝐴 , 𝐵 ⟩ ∈ 𝐶 → ∪ ⟨ 𝐴 , 𝐵 ⟩ ∈ ∪ 𝐶 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opthw.1 | ⊢ 𝐴 ∈ V | |
2 | opthw.2 | ⊢ 𝐵 ∈ V | |
3 | 1 2 | uniop | ⊢ ∪ ⟨ 𝐴 , 𝐵 ⟩ = { 𝐴 , 𝐵 } |
4 | 1 2 | opi2 | ⊢ { 𝐴 , 𝐵 } ∈ ⟨ 𝐴 , 𝐵 ⟩ |
5 | 3 4 | eqeltri | ⊢ ∪ ⟨ 𝐴 , 𝐵 ⟩ ∈ ⟨ 𝐴 , 𝐵 ⟩ |
6 | elssuni | ⊢ ( ⟨ 𝐴 , 𝐵 ⟩ ∈ 𝐶 → ⟨ 𝐴 , 𝐵 ⟩ ⊆ ∪ 𝐶 ) | |
7 | 6 | sseld | ⊢ ( ⟨ 𝐴 , 𝐵 ⟩ ∈ 𝐶 → ( ∪ ⟨ 𝐴 , 𝐵 ⟩ ∈ ⟨ 𝐴 , 𝐵 ⟩ → ∪ ⟨ 𝐴 , 𝐵 ⟩ ∈ ∪ 𝐶 ) ) |
8 | 5 7 | mpi | ⊢ ( ⟨ 𝐴 , 𝐵 ⟩ ∈ 𝐶 → ∪ ⟨ 𝐴 , 𝐵 ⟩ ∈ ∪ 𝐶 ) |