Metamath Proof Explorer


Theorem uniopn

Description: The union of a subset of a topology (that is, the union of any family of open sets of a topology) is an open set. (Contributed by Stefan Allan, 27-Feb-2006)

Ref Expression
Assertion uniopn ( ( 𝐽 ∈ Top ∧ 𝐴𝐽 ) → 𝐴𝐽 )

Proof

Step Hyp Ref Expression
1 istopg ( 𝐽 ∈ Top → ( 𝐽 ∈ Top ↔ ( ∀ 𝑥 ( 𝑥𝐽 𝑥𝐽 ) ∧ ∀ 𝑥𝐽𝑦𝐽 ( 𝑥𝑦 ) ∈ 𝐽 ) ) )
2 1 ibi ( 𝐽 ∈ Top → ( ∀ 𝑥 ( 𝑥𝐽 𝑥𝐽 ) ∧ ∀ 𝑥𝐽𝑦𝐽 ( 𝑥𝑦 ) ∈ 𝐽 ) )
3 2 simpld ( 𝐽 ∈ Top → ∀ 𝑥 ( 𝑥𝐽 𝑥𝐽 ) )
4 elpw2g ( 𝐽 ∈ Top → ( 𝐴 ∈ 𝒫 𝐽𝐴𝐽 ) )
5 4 biimpar ( ( 𝐽 ∈ Top ∧ 𝐴𝐽 ) → 𝐴 ∈ 𝒫 𝐽 )
6 sseq1 ( 𝑥 = 𝐴 → ( 𝑥𝐽𝐴𝐽 ) )
7 unieq ( 𝑥 = 𝐴 𝑥 = 𝐴 )
8 7 eleq1d ( 𝑥 = 𝐴 → ( 𝑥𝐽 𝐴𝐽 ) )
9 6 8 imbi12d ( 𝑥 = 𝐴 → ( ( 𝑥𝐽 𝑥𝐽 ) ↔ ( 𝐴𝐽 𝐴𝐽 ) ) )
10 9 spcgv ( 𝐴 ∈ 𝒫 𝐽 → ( ∀ 𝑥 ( 𝑥𝐽 𝑥𝐽 ) → ( 𝐴𝐽 𝐴𝐽 ) ) )
11 5 10 syl ( ( 𝐽 ∈ Top ∧ 𝐴𝐽 ) → ( ∀ 𝑥 ( 𝑥𝐽 𝑥𝐽 ) → ( 𝐴𝐽 𝐴𝐽 ) ) )
12 11 com23 ( ( 𝐽 ∈ Top ∧ 𝐴𝐽 ) → ( 𝐴𝐽 → ( ∀ 𝑥 ( 𝑥𝐽 𝑥𝐽 ) → 𝐴𝐽 ) ) )
13 12 ex ( 𝐽 ∈ Top → ( 𝐴𝐽 → ( 𝐴𝐽 → ( ∀ 𝑥 ( 𝑥𝐽 𝑥𝐽 ) → 𝐴𝐽 ) ) ) )
14 13 pm2.43d ( 𝐽 ∈ Top → ( 𝐴𝐽 → ( ∀ 𝑥 ( 𝑥𝐽 𝑥𝐽 ) → 𝐴𝐽 ) ) )
15 3 14 mpid ( 𝐽 ∈ Top → ( 𝐴𝐽 𝐴𝐽 ) )
16 15 imp ( ( 𝐽 ∈ Top ∧ 𝐴𝐽 ) → 𝐴𝐽 )