| Step |
Hyp |
Ref |
Expression |
| 1 |
|
istopg |
⊢ ( 𝐽 ∈ Top → ( 𝐽 ∈ Top ↔ ( ∀ 𝑥 ( 𝑥 ⊆ 𝐽 → ∪ 𝑥 ∈ 𝐽 ) ∧ ∀ 𝑥 ∈ 𝐽 ∀ 𝑦 ∈ 𝐽 ( 𝑥 ∩ 𝑦 ) ∈ 𝐽 ) ) ) |
| 2 |
1
|
ibi |
⊢ ( 𝐽 ∈ Top → ( ∀ 𝑥 ( 𝑥 ⊆ 𝐽 → ∪ 𝑥 ∈ 𝐽 ) ∧ ∀ 𝑥 ∈ 𝐽 ∀ 𝑦 ∈ 𝐽 ( 𝑥 ∩ 𝑦 ) ∈ 𝐽 ) ) |
| 3 |
2
|
simpld |
⊢ ( 𝐽 ∈ Top → ∀ 𝑥 ( 𝑥 ⊆ 𝐽 → ∪ 𝑥 ∈ 𝐽 ) ) |
| 4 |
|
elpw2g |
⊢ ( 𝐽 ∈ Top → ( 𝐴 ∈ 𝒫 𝐽 ↔ 𝐴 ⊆ 𝐽 ) ) |
| 5 |
4
|
biimpar |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝐽 ) → 𝐴 ∈ 𝒫 𝐽 ) |
| 6 |
|
sseq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 ⊆ 𝐽 ↔ 𝐴 ⊆ 𝐽 ) ) |
| 7 |
|
unieq |
⊢ ( 𝑥 = 𝐴 → ∪ 𝑥 = ∪ 𝐴 ) |
| 8 |
7
|
eleq1d |
⊢ ( 𝑥 = 𝐴 → ( ∪ 𝑥 ∈ 𝐽 ↔ ∪ 𝐴 ∈ 𝐽 ) ) |
| 9 |
6 8
|
imbi12d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 ⊆ 𝐽 → ∪ 𝑥 ∈ 𝐽 ) ↔ ( 𝐴 ⊆ 𝐽 → ∪ 𝐴 ∈ 𝐽 ) ) ) |
| 10 |
9
|
spcgv |
⊢ ( 𝐴 ∈ 𝒫 𝐽 → ( ∀ 𝑥 ( 𝑥 ⊆ 𝐽 → ∪ 𝑥 ∈ 𝐽 ) → ( 𝐴 ⊆ 𝐽 → ∪ 𝐴 ∈ 𝐽 ) ) ) |
| 11 |
5 10
|
syl |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝐽 ) → ( ∀ 𝑥 ( 𝑥 ⊆ 𝐽 → ∪ 𝑥 ∈ 𝐽 ) → ( 𝐴 ⊆ 𝐽 → ∪ 𝐴 ∈ 𝐽 ) ) ) |
| 12 |
11
|
com23 |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝐽 ) → ( 𝐴 ⊆ 𝐽 → ( ∀ 𝑥 ( 𝑥 ⊆ 𝐽 → ∪ 𝑥 ∈ 𝐽 ) → ∪ 𝐴 ∈ 𝐽 ) ) ) |
| 13 |
12
|
ex |
⊢ ( 𝐽 ∈ Top → ( 𝐴 ⊆ 𝐽 → ( 𝐴 ⊆ 𝐽 → ( ∀ 𝑥 ( 𝑥 ⊆ 𝐽 → ∪ 𝑥 ∈ 𝐽 ) → ∪ 𝐴 ∈ 𝐽 ) ) ) ) |
| 14 |
13
|
pm2.43d |
⊢ ( 𝐽 ∈ Top → ( 𝐴 ⊆ 𝐽 → ( ∀ 𝑥 ( 𝑥 ⊆ 𝐽 → ∪ 𝑥 ∈ 𝐽 ) → ∪ 𝐴 ∈ 𝐽 ) ) ) |
| 15 |
3 14
|
mpid |
⊢ ( 𝐽 ∈ Top → ( 𝐴 ⊆ 𝐽 → ∪ 𝐴 ∈ 𝐽 ) ) |
| 16 |
15
|
imp |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝐽 ) → ∪ 𝐴 ∈ 𝐽 ) |