Step |
Hyp |
Ref |
Expression |
1 |
|
unipr.1 |
⊢ 𝐴 ∈ V |
2 |
|
unipr.2 |
⊢ 𝐵 ∈ V |
3 |
|
19.43 |
⊢ ( ∃ 𝑦 ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 = 𝐴 ) ∨ ( 𝑥 ∈ 𝑦 ∧ 𝑦 = 𝐵 ) ) ↔ ( ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ 𝑦 = 𝐴 ) ∨ ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ 𝑦 = 𝐵 ) ) ) |
4 |
|
vex |
⊢ 𝑦 ∈ V |
5 |
4
|
elpr |
⊢ ( 𝑦 ∈ { 𝐴 , 𝐵 } ↔ ( 𝑦 = 𝐴 ∨ 𝑦 = 𝐵 ) ) |
6 |
5
|
anbi2i |
⊢ ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ { 𝐴 , 𝐵 } ) ↔ ( 𝑥 ∈ 𝑦 ∧ ( 𝑦 = 𝐴 ∨ 𝑦 = 𝐵 ) ) ) |
7 |
|
andi |
⊢ ( ( 𝑥 ∈ 𝑦 ∧ ( 𝑦 = 𝐴 ∨ 𝑦 = 𝐵 ) ) ↔ ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 = 𝐴 ) ∨ ( 𝑥 ∈ 𝑦 ∧ 𝑦 = 𝐵 ) ) ) |
8 |
6 7
|
bitri |
⊢ ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ { 𝐴 , 𝐵 } ) ↔ ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 = 𝐴 ) ∨ ( 𝑥 ∈ 𝑦 ∧ 𝑦 = 𝐵 ) ) ) |
9 |
8
|
exbii |
⊢ ( ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ { 𝐴 , 𝐵 } ) ↔ ∃ 𝑦 ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 = 𝐴 ) ∨ ( 𝑥 ∈ 𝑦 ∧ 𝑦 = 𝐵 ) ) ) |
10 |
1
|
clel3 |
⊢ ( 𝑥 ∈ 𝐴 ↔ ∃ 𝑦 ( 𝑦 = 𝐴 ∧ 𝑥 ∈ 𝑦 ) ) |
11 |
|
exancom |
⊢ ( ∃ 𝑦 ( 𝑦 = 𝐴 ∧ 𝑥 ∈ 𝑦 ) ↔ ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ 𝑦 = 𝐴 ) ) |
12 |
10 11
|
bitri |
⊢ ( 𝑥 ∈ 𝐴 ↔ ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ 𝑦 = 𝐴 ) ) |
13 |
2
|
clel3 |
⊢ ( 𝑥 ∈ 𝐵 ↔ ∃ 𝑦 ( 𝑦 = 𝐵 ∧ 𝑥 ∈ 𝑦 ) ) |
14 |
|
exancom |
⊢ ( ∃ 𝑦 ( 𝑦 = 𝐵 ∧ 𝑥 ∈ 𝑦 ) ↔ ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ 𝑦 = 𝐵 ) ) |
15 |
13 14
|
bitri |
⊢ ( 𝑥 ∈ 𝐵 ↔ ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ 𝑦 = 𝐵 ) ) |
16 |
12 15
|
orbi12i |
⊢ ( ( 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵 ) ↔ ( ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ 𝑦 = 𝐴 ) ∨ ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ 𝑦 = 𝐵 ) ) ) |
17 |
3 9 16
|
3bitr4ri |
⊢ ( ( 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵 ) ↔ ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ { 𝐴 , 𝐵 } ) ) |
18 |
17
|
abbii |
⊢ { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵 ) } = { 𝑥 ∣ ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ { 𝐴 , 𝐵 } ) } |
19 |
|
df-un |
⊢ ( 𝐴 ∪ 𝐵 ) = { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵 ) } |
20 |
|
df-uni |
⊢ ∪ { 𝐴 , 𝐵 } = { 𝑥 ∣ ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ { 𝐴 , 𝐵 } ) } |
21 |
18 19 20
|
3eqtr4ri |
⊢ ∪ { 𝐴 , 𝐵 } = ( 𝐴 ∪ 𝐵 ) |