Step |
Hyp |
Ref |
Expression |
1 |
|
funfn |
⊢ ( Fun 𝐹 ↔ 𝐹 Fn dom 𝐹 ) |
2 |
|
r19.42v |
⊢ ( ∃ 𝑥 ∈ 𝐴 ( 𝑦 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑦 ) ∈ 𝑥 ) ↔ ( 𝑦 ∈ dom 𝐹 ∧ ∃ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑦 ) ∈ 𝑥 ) ) |
3 |
2
|
bicomi |
⊢ ( ( 𝑦 ∈ dom 𝐹 ∧ ∃ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑦 ) ∈ 𝑥 ) ↔ ∃ 𝑥 ∈ 𝐴 ( 𝑦 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑦 ) ∈ 𝑥 ) ) |
4 |
3
|
a1i |
⊢ ( 𝐹 Fn dom 𝐹 → ( ( 𝑦 ∈ dom 𝐹 ∧ ∃ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑦 ) ∈ 𝑥 ) ↔ ∃ 𝑥 ∈ 𝐴 ( 𝑦 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑦 ) ∈ 𝑥 ) ) ) |
5 |
|
eluni2 |
⊢ ( ( 𝐹 ‘ 𝑦 ) ∈ ∪ 𝐴 ↔ ∃ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑦 ) ∈ 𝑥 ) |
6 |
5
|
anbi2i |
⊢ ( ( 𝑦 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑦 ) ∈ ∪ 𝐴 ) ↔ ( 𝑦 ∈ dom 𝐹 ∧ ∃ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑦 ) ∈ 𝑥 ) ) |
7 |
6
|
a1i |
⊢ ( 𝐹 Fn dom 𝐹 → ( ( 𝑦 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑦 ) ∈ ∪ 𝐴 ) ↔ ( 𝑦 ∈ dom 𝐹 ∧ ∃ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑦 ) ∈ 𝑥 ) ) ) |
8 |
|
elpreima |
⊢ ( 𝐹 Fn dom 𝐹 → ( 𝑦 ∈ ( ◡ 𝐹 “ 𝑥 ) ↔ ( 𝑦 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑦 ) ∈ 𝑥 ) ) ) |
9 |
8
|
rexbidv |
⊢ ( 𝐹 Fn dom 𝐹 → ( ∃ 𝑥 ∈ 𝐴 𝑦 ∈ ( ◡ 𝐹 “ 𝑥 ) ↔ ∃ 𝑥 ∈ 𝐴 ( 𝑦 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑦 ) ∈ 𝑥 ) ) ) |
10 |
4 7 9
|
3bitr4d |
⊢ ( 𝐹 Fn dom 𝐹 → ( ( 𝑦 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑦 ) ∈ ∪ 𝐴 ) ↔ ∃ 𝑥 ∈ 𝐴 𝑦 ∈ ( ◡ 𝐹 “ 𝑥 ) ) ) |
11 |
|
elpreima |
⊢ ( 𝐹 Fn dom 𝐹 → ( 𝑦 ∈ ( ◡ 𝐹 “ ∪ 𝐴 ) ↔ ( 𝑦 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑦 ) ∈ ∪ 𝐴 ) ) ) |
12 |
|
eliun |
⊢ ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 ( ◡ 𝐹 “ 𝑥 ) ↔ ∃ 𝑥 ∈ 𝐴 𝑦 ∈ ( ◡ 𝐹 “ 𝑥 ) ) |
13 |
12
|
a1i |
⊢ ( 𝐹 Fn dom 𝐹 → ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 ( ◡ 𝐹 “ 𝑥 ) ↔ ∃ 𝑥 ∈ 𝐴 𝑦 ∈ ( ◡ 𝐹 “ 𝑥 ) ) ) |
14 |
10 11 13
|
3bitr4d |
⊢ ( 𝐹 Fn dom 𝐹 → ( 𝑦 ∈ ( ◡ 𝐹 “ ∪ 𝐴 ) ↔ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 ( ◡ 𝐹 “ 𝑥 ) ) ) |
15 |
14
|
eqrdv |
⊢ ( 𝐹 Fn dom 𝐹 → ( ◡ 𝐹 “ ∪ 𝐴 ) = ∪ 𝑥 ∈ 𝐴 ( ◡ 𝐹 “ 𝑥 ) ) |
16 |
1 15
|
sylbi |
⊢ ( Fun 𝐹 → ( ◡ 𝐹 “ ∪ 𝐴 ) = ∪ 𝑥 ∈ 𝐴 ( ◡ 𝐹 “ 𝑥 ) ) |