Metamath Proof Explorer


Theorem unipreima

Description: Preimage of a class union. (Contributed by Thierry Arnoux, 7-Feb-2017)

Ref Expression
Assertion unipreima ( Fun 𝐹 → ( 𝐹 𝐴 ) = 𝑥𝐴 ( 𝐹𝑥 ) )

Proof

Step Hyp Ref Expression
1 funfn ( Fun 𝐹𝐹 Fn dom 𝐹 )
2 r19.42v ( ∃ 𝑥𝐴 ( 𝑦 ∈ dom 𝐹 ∧ ( 𝐹𝑦 ) ∈ 𝑥 ) ↔ ( 𝑦 ∈ dom 𝐹 ∧ ∃ 𝑥𝐴 ( 𝐹𝑦 ) ∈ 𝑥 ) )
3 2 bicomi ( ( 𝑦 ∈ dom 𝐹 ∧ ∃ 𝑥𝐴 ( 𝐹𝑦 ) ∈ 𝑥 ) ↔ ∃ 𝑥𝐴 ( 𝑦 ∈ dom 𝐹 ∧ ( 𝐹𝑦 ) ∈ 𝑥 ) )
4 3 a1i ( 𝐹 Fn dom 𝐹 → ( ( 𝑦 ∈ dom 𝐹 ∧ ∃ 𝑥𝐴 ( 𝐹𝑦 ) ∈ 𝑥 ) ↔ ∃ 𝑥𝐴 ( 𝑦 ∈ dom 𝐹 ∧ ( 𝐹𝑦 ) ∈ 𝑥 ) ) )
5 eluni2 ( ( 𝐹𝑦 ) ∈ 𝐴 ↔ ∃ 𝑥𝐴 ( 𝐹𝑦 ) ∈ 𝑥 )
6 5 anbi2i ( ( 𝑦 ∈ dom 𝐹 ∧ ( 𝐹𝑦 ) ∈ 𝐴 ) ↔ ( 𝑦 ∈ dom 𝐹 ∧ ∃ 𝑥𝐴 ( 𝐹𝑦 ) ∈ 𝑥 ) )
7 6 a1i ( 𝐹 Fn dom 𝐹 → ( ( 𝑦 ∈ dom 𝐹 ∧ ( 𝐹𝑦 ) ∈ 𝐴 ) ↔ ( 𝑦 ∈ dom 𝐹 ∧ ∃ 𝑥𝐴 ( 𝐹𝑦 ) ∈ 𝑥 ) ) )
8 elpreima ( 𝐹 Fn dom 𝐹 → ( 𝑦 ∈ ( 𝐹𝑥 ) ↔ ( 𝑦 ∈ dom 𝐹 ∧ ( 𝐹𝑦 ) ∈ 𝑥 ) ) )
9 8 rexbidv ( 𝐹 Fn dom 𝐹 → ( ∃ 𝑥𝐴 𝑦 ∈ ( 𝐹𝑥 ) ↔ ∃ 𝑥𝐴 ( 𝑦 ∈ dom 𝐹 ∧ ( 𝐹𝑦 ) ∈ 𝑥 ) ) )
10 4 7 9 3bitr4d ( 𝐹 Fn dom 𝐹 → ( ( 𝑦 ∈ dom 𝐹 ∧ ( 𝐹𝑦 ) ∈ 𝐴 ) ↔ ∃ 𝑥𝐴 𝑦 ∈ ( 𝐹𝑥 ) ) )
11 elpreima ( 𝐹 Fn dom 𝐹 → ( 𝑦 ∈ ( 𝐹 𝐴 ) ↔ ( 𝑦 ∈ dom 𝐹 ∧ ( 𝐹𝑦 ) ∈ 𝐴 ) ) )
12 eliun ( 𝑦 𝑥𝐴 ( 𝐹𝑥 ) ↔ ∃ 𝑥𝐴 𝑦 ∈ ( 𝐹𝑥 ) )
13 12 a1i ( 𝐹 Fn dom 𝐹 → ( 𝑦 𝑥𝐴 ( 𝐹𝑥 ) ↔ ∃ 𝑥𝐴 𝑦 ∈ ( 𝐹𝑥 ) ) )
14 10 11 13 3bitr4d ( 𝐹 Fn dom 𝐹 → ( 𝑦 ∈ ( 𝐹 𝐴 ) ↔ 𝑦 𝑥𝐴 ( 𝐹𝑥 ) ) )
15 14 eqrdv ( 𝐹 Fn dom 𝐹 → ( 𝐹 𝐴 ) = 𝑥𝐴 ( 𝐹𝑥 ) )
16 1 15 sylbi ( Fun 𝐹 → ( 𝐹 𝐴 ) = 𝑥𝐴 ( 𝐹𝑥 ) )